Erwartungswert
Definition
Es sei [math]\displaystyle{ S=\{x_1,x_2,...,x_n\} }[/math] die Ergebnismenge eines Zufallsexperiments mit [math]\displaystyle{ n \in \mathbb{N} }[/math] und [math]\displaystyle{ x_1,x_2,...,x_n \in \mathbb{R} }[/math]. Für die Zufallsvariable [math]\displaystyle{ X }[/math] und die Wahrscheinlichkeitsverteilung [math]\displaystyle{ P:S \rightarrow \mathbb{R} }[/math] sei [math]\displaystyle{ P(X=x_i) }[/math] die Wahrscheinlichkeit des Ergebnisses [math]\displaystyle{ x_i }[/math] mit [math]\displaystyle{ 1 \leq i \leq n }[/math]. Dann ist [math]\displaystyle{ \mu=E\left(X\right)=x_1\cdot P(X=x_1)+x_2\cdot P(X=x_2)+\ldots+x_n\cdot P(X=x_n) }[/math] der Erwartungswert der Wahrscheinlichkeitsverteilung.