Baumdiagramm

Aus FLBK-Wiki
Zur Navigation springen Zur Suche springen

Definition

Ein Baumdiagramm stellt die möglichen Ergebnisse eines Zufallsexperiments grafisch dar. Es dient dazu, die Wahrscheinlichkeitsverteilung der möglichen Ergebnisse zu berechnen und zu visualisieren.

Jeder Knoten eines Baumdiagramms repräsentiert ein bestimmtes Zwischenergebnis im Ablauf des Zufallsexperiments. Die Knoten sind durch Zweige verbunden. Jeder Zweig ist mit der Wahrscheinlichkeit beschriftet, mit der das Zwischenergebnis des verbundenen Knotens eintrifft. Ein Pfad ist eine Folge von Knoten, die durch Zweige miteinander verbunden sind. Ein Pfad der bei dem Anfangsknoten startet und bei einem Endknoten endet repräsentiert ein Ergebnis des Zufallsexperiments. Die Wahrscheinlichkeit des Ergebnisses wird an das Ende des Pfades geschrieben.

Pfadmultiplikation

Die Pfadmultiplikationsregel besagt, dass im Baumdiagramm die Wahrscheinlichkeit eines Pfades gleich dem Produkt der Wahrscheinlichkeiten auf den Teilstrecken des Pfades ist.

Pfadaddition

Die Pfadadditionsregel besagt, dass im Baumdiagramm die Wahrscheinlichkeit eines Ereignisses gleich der Summe der Wahrscheinlichkeiten der in diesem Ereignis enthaltenen Ergebnisse sind.

Beispiele

Zufallsexperiment dreifacher Münzwurf grafisch darstellen

Eine Münze wird dreimal geworfen und man beobachtet, in welcher Reihenfolge Zahl (Z) und Kopf (K) oben liegen. Die Ergebnismenge ist dann [math]\displaystyle{ S = \{ZZZ; ZZK; ZKZ; ZKK; KZZ; KZK; KKZ; KKK\} }[/math].

Das Ereignis, dass

  • kein Kopf erscheint, ist [math]\displaystyle{ A = \{ZZZ\} }[/math].
  • zwei- oder dreimal hintereinander Zahl erscheint, ist [math]\displaystyle{ B = \{ZZZ; ZZK; KZZ\} }[/math].

Die rechte Abbildung zeigt, wie eine Ergebnismenge S mit Hilfe eines Baumdiagramms dargestellt werden kann. Ereignis B tritt also ein, wenn das Zufallsexperiment entlang einer zu Ereignis B gehörigen Kantenkombination führt (z. B. KZZ).

Die Wahrscheinlichkeit für jede Teilstrecke ist 0,5. Wir definieren eine Zufallsvariable X, die die Häufigkeit von Zahl angibt. X kann dann die Werte 0, 1, 2 und 3 annehmen. Die Wahrscheinlichkeit für das Ereignis {ZZZ} ist:

[math]\displaystyle{ P\left(ZZZ\right)=P(X=3)=0,5\cdot0,5\cdot0,5=0,125=12,5\% }[/math] (Pfadmultiplikation)

Das Ereignis „die ersten beiden Würfe ergeben Zahl“ ist [math]\displaystyle{ \{ZZZ; ZZK\} }[/math] mit der Wahrscheinlichkeit:

[math]\displaystyle{ P\left(\{ZZZ;ZZK\} \right)=P(\{ZZZ\})+P(\{ZZK\})=0,125+0,125=0,25=25\% }[/math] (Pfadaddition)