Hauptsatz der Differential- und Integralrechnung: Unterschied zwischen den Versionen

Aus FLBK-Wiki
Zur Navigation springen Zur Suche springen
Zeile 101: Zeile 101:
             },
             },
             baseLeft: {    // Start point
             baseLeft: {    // Start point
5899            visible: true,
            visible: true,
5900            fixed: false,
            fixed: false,
5901            withLabel: true,
            withLabel: true,
5902            name: 'a'
            name: 'a'
5903        }
        }
         });
         });
     </script>
     </script>

Version vom 12. Februar 2025, 08:20 Uhr

Mit Hilfe des Hauptsatzes der Differential- und Integralrechnung werden Flächeninhalte zwischen dem Graphen einer Funktion der x-Achse berechnet.

Flächeninhaltsfunktion und Stammfunktion

Der Flächeninhalt zwischen dem Graphen einer Funktion [math]\displaystyle{ f }[/math] und der x-Achse im Intervall [math]\displaystyle{ [0;x] }[/math] wird durch den Funktionswert einer Flächeninhaltsfunktion [math]\displaystyle{ A }[/math] ermittelt.

Es sei [math]\displaystyle{ F }[/math] die Stammfunktion zu einer Funktion [math]\displaystyle{ f }[/math] mit der Konstanten [math]\displaystyle{ C=0 }[/math], dann ist [math]\displaystyle{ F }[/math] die Flächeninhaltsfunktion zu [math]\displaystyle{ f }[/math].

Bestimmtes Integral

Das bestimmte Integral einer stetigen Funktion [math]\displaystyle{ f }[/math] auf dem Intervall [math]\displaystyle{ [a; b] }[/math] ist durch

[math]\displaystyle{ \int_a^b f(x) dx }[/math]

gegeben.

Für auf den Intervallen [math]\displaystyle{ [a;b] }[/math] und [math]\displaystyle{ [b;c] }[/math] stetige Funktionen [math]\displaystyle{ f, ~g }[/math] gelten die folgenden Rechenregeln:

Faktorregel

[math]\displaystyle{ \int_a^b c \cdot f(x) dx=c \cdot \int_a^b f(x) dx }[/math]

Summenregel

[math]\displaystyle{ \int_a^b (f(x)+g(x)) dx=\int_a^b f(x)dx+\int_a^bg(x) dx }[/math]

Intervalladditivität

[math]\displaystyle{ \int_a^c f(x) dx=\int_a^b f(x) dx+\int_b^c f(x) dx }[/math]

Vertauschen der Integrationsgrenzen

[math]\displaystyle{ \int_a^b f(x) dx=-\int_b^a f(x) dx }[/math]

Definition

Falls [math]\displaystyle{ F }[/math] eine Stammfunktion von [math]\displaystyle{ f }[/math] ist, so wird das bestimmte Integral von [math]\displaystyle{ f }[/math] auf dem Intervall [math]\displaystyle{ [a;b] }[/math] durch die Gleichung

[math]\displaystyle{ \int_a^b f(x) \, dx = F(b) - F(a) }[/math]

berechnet.

Hierbei bezeichnet [math]\displaystyle{ a }[/math] die untere und [math]\displaystyle{ b }[/math] die obere Grenze des Integrals. Das bestimmte Integral gibt den orientierten Flächeninhalt an, das heißt:

  • Liegt der Graph von [math]\displaystyle{ f }[/math] oberhalb der x-Achse, ist das bestimmte Integral positiv.
  • Liegt der Graph von [math]\displaystyle{ f }[/math] unterhalb der x-Achse, ist das bestimmte Integral negativ.
  • Liegt der Graph von [math]\displaystyle{ f }[/math] sowohl unterhalb als auch oberhalb der x-Achse, ist das bestimmte Integral die Differenz aus dem oberen Flächeninhalt und dem unteren Flächeninhalt.

Integralfunktion

Es sei [math]\displaystyle{ f }[/math] eine auf dem Intervall [math]\displaystyle{ [a;b] }[/math] stetige Funktion, dann ist

[math]\displaystyle{ I_a(x)=\int_a^x f(t)d(t) }[/math]

die dazugehörige Integralfunktion.

Flächen zwischen Funktionsgraphen ermitteln

Es seien [math]\displaystyle{ f, ~g }[/math] auf dem Intervall [math]\displaystyle{ [a;b] }[/math] stetige Funktionen. Die Fläche zwischen den Graphen von [math]\displaystyle{ f, ~g }[/math] wird wie folgt ermittelt:

  1. Schnittstellen [math]\displaystyle{ x_{S_1},...,x_{S_n} }[/math] mit [math]\displaystyle{ n \in \mathbb{N} }[/math] der Graphen von [math]\displaystyle{ f, ~g }[/math] ermitteln.
  2. Flächeninhalt durch [math]\displaystyle{ A=|\int_{x_{S_1}}^{x_{S_2}}(f(x)-g(x))dx|+\int_{x_{S_1}}^{x_{S_2}}(f(x)-g(x))dx|+...+\int_{x_{S_{n-1}}}^{x_{S_n}}(f(x)-g(x))dx| }[/math] (siehe Betragsfunktion)

Beispiele

Flächeninhalt ermitteln

Wir berechnen das bestimmte Integral von [math]\displaystyle{ f(x) = x^2 }[/math] auf dem Intervall [math]\displaystyle{ [1;2] }[/math]. Eine Stammfunktion von [math]\displaystyle{ f }[/math] ist [math]\displaystyle{ F(x) = \frac{x^3}{3} }[/math]. Das bestimmte Integral auf dem Intervall [1;2] wird durch

[math]\displaystyle{ \int_1^2 x^2 ~dx = F(2) - F(1) }[/math]
[math]\displaystyle{ = \frac{2^3}{3} - \frac{1^3}{3} = \frac{8}{3} - \frac{1}{3} = \frac{7}{3} }[/math]

berechnet. Der Graph von [math]\displaystyle{ f }[/math] verläuft auf dem Intervall [math]\displaystyle{ [1;2] }[/math] oberhalb der x-Achse. Der Flächeninhal beträgt somit [math]\displaystyle{ \frac{7}{3} }[/math] Einheiten und ist im rechten Bild grün eingezeichnet.

Das bestimmte Integral der Funktion [math]\displaystyle{ f(x)=x^2 }[/math] auf dem Intervall [math]\displaystyle{ [1;2] }[/math] berechnet sich durch [math]\displaystyle{ \int_1^2 x^2 ~ dx=\frac{7}{3} }[/math].

Orientierten Flächeninhalt ermitteln

Wir betrachten [math]\displaystyle{ f(x) = x }[/math] auf dem Intervall [math]\displaystyle{ [-1;1] }[/math]. Eine Stammfunktion von [math]\displaystyle{ f }[/math] ist [math]\displaystyle{ F(x) = \frac{x^2}{2} }[/math]. Das bestimmte Integral ist:

[math]\displaystyle{ \int_{-1}^1 x \, dx = F(1) - F(-1) }[/math]
[math]\displaystyle{ = \frac{1^2}{2} - \frac{(-1)^2}{2} = \frac{1}{2} - \frac{1}{2} = 0 }[/math].

Der orientierte Flächeninhalt beträgt [math]\displaystyle{ 0 }[/math], da sich die positiven und negativen Flächeninhalte genau ausgleichen.

Das bestimmte Integral der Funktion [math]\displaystyle{ f(x)=x }[/math] auf dem Intervall [math]\displaystyle{ [-1;1] }[/math] berechnet sich durch [math]\displaystyle{ \int_{-1}^1 x ~ dx= }[/math][math]\displaystyle{ \frac{1}{2} }[/math][math]\displaystyle{ - }[/math][math]\displaystyle{ \frac{1}{2} }[/math][math]\displaystyle{ =0 }[/math].

Integralfunktion ermitteln

Gegeben sei [math]\displaystyle{ f(x) = 3x }[/math] und [math]\displaystyle{ a = 0 }[/math]. Die Integralfunktion ist:

[math]\displaystyle{ I_0(x) = \int_0^x 3t \, dt }[/math].

Eine Stammfunktion von [math]\displaystyle{ 3t }[/math] ist [math]\displaystyle{ \frac{3t^2}{2} }[/math], also gilt

[math]\displaystyle{ I_0(x) = \frac{3x^2}{2} - \frac{3 \cdot 0^2}{2} = \frac{3x^2}{2} }[/math].