Hauptsatz der Differential- und Integralrechnung: Unterschied zwischen den Versionen
Zeile 34: | Zeile 34: | ||
Eine Stammfunktion von <math>f</math> ist <math>F(x) = \frac{x^3}{3}</math>. | Eine Stammfunktion von <math>f</math> ist <math>F(x) = \frac{x^3}{3}</math>. | ||
Das bestimmte Integral auf dem Intervall [1;2] wird durch | Das bestimmte Integral auf dem Intervall [1;2] wird durch | ||
:<math>\int_1^2 x^2 | :<math>\int_1^2 x^2 ~dx = F(2) - F(1)</math> | ||
:<math>= \frac{2^3}{3} - \frac{1^3}{3} = \frac{8}{3} - \frac{1}{3} = \frac{7}{3}</math> | :<math>= \frac{2^3}{3} - \frac{1^3}{3} = \frac{8}{3} - \frac{1}{3} = \frac{7}{3}</math> | ||
berechnet. | berechnet. | ||
Der Graph von <math>f</math> verläuft auf dem Intervall <math>[1;2]</math> oberhalb der x-Achse. Der Flächeninhal beträgt somit <math>\frac{7}{3}</math> Einheiten. | Der Graph von <math>f</math> verläuft auf dem Intervall <math>[1;2]</math> oberhalb der x-Achse. Der Flächeninhal beträgt somit <math>\frac{7}{3}</math> Einheiten. | ||
[[Datei:HauptsatzIntBspx2.gif|mini|Das bestimmte Integral der Funktion <span style="color:blau"><math>f(x)=x^2</math></span> berechnet sich durch <math>\int_1^2 x^2 ~ dx=\frac{7}{3}</math>]] | |||
===Orientierten Flächeninhalt ermitteln=== | ===Orientierten Flächeninhalt ermitteln=== |