Kettenregel

Aus FLBK-Wiki
Zur Navigation springen Zur Suche springen

Die Kettenregel ist wie die Produktregel eine Regel zum Ableiten von Funktionen.

Definition

Sind [math]\displaystyle{ u:\mathbb{D} \rightarrow \mathbb{R} }[/math] und [math]\displaystyle{ v:\mathbb{D} \rightarrow \mathbb{R} }[/math] differenzierbare Funktionen, so ist auch

[math]\displaystyle{ f(x) = u(v(x)) }[/math] für alle [math]\displaystyle{ x \in \mathbb{D} }[/math]

differenzierbar. Für die Ableitung von [math]\displaystyle{ f }[/math] gilt

[math]\displaystyle{ f'(x) = u'(v(x)) \cdot v'(x) }[/math].

Beispiele