Exponentialfunktion: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
|||
Zeile 4: | Zeile 4: | ||
Eine [[Funktion]] der Form <math>f(x)=c \cdot a^x</math> mit <math>c \in \mathbb{R},~a \geq 0,~a \neq 1</math> heißt '''allgemeine Exponentialfunktion zur Basis a'''. | Eine [[Funktion]] der Form <math>f(x)=c \cdot a^x</math> mit <math>c \in \mathbb{R},~a \geq 0,~a \neq 1</math> heißt '''allgemeine Exponentialfunktion zur Basis a'''. | ||
<math>c</math> ist der '''y-Achsenabschnitt'''. Der '''Schnittpunkt mit der y-Achse''' ist <math>S_y(0|c)</math>. Gilt <math>a>1</math> und <math>c>0</math> steigt der Graph [[Monotone_Funktion#Definition|streng monoton]] an. Wir nennen das '''positives Wachstum'''. Gilt <math>0<a<1</math> und <math>c>0</math> fällt der Graph [[Monotone_Funktion#Definition|streng monoton]]. Wir nennen das '''negatives Wachstum'''. | <math>c</math> ist der '''y-Achsenabschnitt'''. Der '''Schnittpunkt mit der y-Achse''' ist <math>S_y(0|c)</math>. Gilt <math>a>1</math> und <math>c>0</math> steigt der Graph [[Monotone_Funktion#Definition|streng monoton]] an. Wir nennen das '''positives Wachstum'''. Gilt <math>0<a<1</math> und <math>c>0</math> fällt der Graph [[Monotone_Funktion#Definition|streng monoton]]. Wir nennen das '''negatives Wachstum'''. | ||
==Nullstellen== | ==Nullstellen== | ||
Zeile 11: | Zeile 11: | ||
==Beispiele== | ==Beispiele== | ||
===Exponentialfunktionen mit verschiedenen Basen=== | ===Exponentialfunktionen mit verschiedenen Basen=== | ||
[[Datei:ExponentialfunktionBasen.png|mini|Graphen der Exponentialfunktionen mit verschiedenen Basen]] | |||
Wir betrachten die Exponentialfunktionen <math>f_1(x)=4^x,~f_2(x)=6^x,~f_3(x)=0,7^x,~f_4(x)=0,3^x</math>. Die Basis für die Funktion <math>f_1</math> ist <math>a=4</math>, für jede der Funktionen gilt <math>c=1</math>. | |||
Der y-Achsenabschnitt der Funktion <math>f_1</math> wird durch <math>f_1(0)=4^0=1</math> berechnet. Der Schnittpunkt mit der y-Achse beträgt <math>S_y(0|1)</math>. | |||
Die Graphen der Funktionen <math>f_1</math> und <math>f_2</math> zeigen positives Wachstum. Die Graphen der Funktionen <math>f_3</math> und <math>f_4</math> zeigen negatives Wachstum. | |||
Die Nullstelle von <math>f_1</math> wird durch | |||
<math>f_1(x)=0</math> | |||
<math>4^x=0</math> | |||
berechnet. Es <math>4^x \neq 0</math> für jedes <math>x \in \mathbb{R}</math>. Daher hat <math>f_1</math> keine Nullstellen. | |||
===Exponentialfunktionen mit verschiedenen Faktoren=== | ===Exponentialfunktionen mit verschiedenen Faktoren=== | ||
[[Datei:ExponentialfunktionFaktoren.png|mini]] | |||
Die [[quadratische Funktion]] <math>f(x)=-2x^2+3x+5</math> ist eine ganzrationale Funktion mit Grad <math>2</math> und den Koeffizienten <math>-2,3,5</math>. | Die [[quadratische Funktion]] <math>f(x)=-2x^2+3x+5</math> ist eine ganzrationale Funktion mit Grad <math>2</math> und den Koeffizienten <math>-2,3,5</math>. | ||
===Ganzrationale Funktion 3. Grades=== | ===Ganzrationale Funktion 3. Grades=== | ||
<math>f(x)=4x^3-24x^2+36</math> ist eine ganzrationale Funktion, da der Funktionsterm, <math>4x^3-24x^2+36</math>, ein Polynom ist. Der Grad von <math>f</math> ist <math>3</math>. Die Koeffizienten sind <math>3, -2, 0, 36</math>. Der Graph sieht wie folgt aus: | <math>f(x)=4x^3-24x^2+36</math> ist eine ganzrationale Funktion, da der Funktionsterm, <math>4x^3-24x^2+36</math>, ein Polynom ist. Der Grad von <math>f</math> ist <math>3</math>. Die Koeffizienten sind <math>3, -2, 0, 36</math>. Der Graph sieht wie folgt aus: | ||
[[Kategorie:Mathematische Funktion]] | [[Kategorie:Mathematische Funktion]] | ||
[[Kategorie:FHR_WuV_Mathe]] | [[Kategorie:FHR_WuV_Mathe]] |
Version vom 21. August 2024, 21:39 Uhr
Exponentialfunktionen haben die Form [math]\displaystyle{ f(x)=c \cdot a^x }[/math] und spielen insbesondere in Wachstumsprozessen eine wichtige Rolle. Dazu gehören der Zinseszinseffekt, der Bevölkerungswachstum oder die Ausbreitung von Infektionskrankheiten.
Definition
Eine Funktion der Form [math]\displaystyle{ f(x)=c \cdot a^x }[/math] mit [math]\displaystyle{ c \in \mathbb{R},~a \geq 0,~a \neq 1 }[/math] heißt allgemeine Exponentialfunktion zur Basis a.
[math]\displaystyle{ c }[/math] ist der y-Achsenabschnitt. Der Schnittpunkt mit der y-Achse ist [math]\displaystyle{ S_y(0|c) }[/math]. Gilt [math]\displaystyle{ a\gt 1 }[/math] und [math]\displaystyle{ c\gt 0 }[/math] steigt der Graph streng monoton an. Wir nennen das positives Wachstum. Gilt [math]\displaystyle{ 0\lt a\lt 1 }[/math] und [math]\displaystyle{ c\gt 0 }[/math] fällt der Graph streng monoton. Wir nennen das negatives Wachstum.
Nullstellen
Eine allgemeine Exponentialfunktion zur Basis [math]\displaystyle{ a }[/math] der Form [math]\displaystyle{ f(x)=c \cdot a^x }[/math] mit [math]\displaystyle{ c \in \mathbb{R},~a \geq 0,~a \neq 1 }[/math] hat keine Nullstellen.
Beispiele
Exponentialfunktionen mit verschiedenen Basen

Wir betrachten die Exponentialfunktionen [math]\displaystyle{ f_1(x)=4^x,~f_2(x)=6^x,~f_3(x)=0,7^x,~f_4(x)=0,3^x }[/math]. Die Basis für die Funktion [math]\displaystyle{ f_1 }[/math] ist [math]\displaystyle{ a=4 }[/math], für jede der Funktionen gilt [math]\displaystyle{ c=1 }[/math].
Der y-Achsenabschnitt der Funktion [math]\displaystyle{ f_1 }[/math] wird durch [math]\displaystyle{ f_1(0)=4^0=1 }[/math] berechnet. Der Schnittpunkt mit der y-Achse beträgt [math]\displaystyle{ S_y(0|1) }[/math].
Die Graphen der Funktionen [math]\displaystyle{ f_1 }[/math] und [math]\displaystyle{ f_2 }[/math] zeigen positives Wachstum. Die Graphen der Funktionen [math]\displaystyle{ f_3 }[/math] und [math]\displaystyle{ f_4 }[/math] zeigen negatives Wachstum.
Die Nullstelle von [math]\displaystyle{ f_1 }[/math] wird durch
[math]\displaystyle{ f_1(x)=0 }[/math]
[math]\displaystyle{ 4^x=0 }[/math]
berechnet. Es [math]\displaystyle{ 4^x \neq 0 }[/math] für jedes [math]\displaystyle{ x \in \mathbb{R} }[/math]. Daher hat [math]\displaystyle{ f_1 }[/math] keine Nullstellen.
Exponentialfunktionen mit verschiedenen Faktoren

Die quadratische Funktion [math]\displaystyle{ f(x)=-2x^2+3x+5 }[/math] ist eine ganzrationale Funktion mit Grad [math]\displaystyle{ 2 }[/math] und den Koeffizienten [math]\displaystyle{ -2,3,5 }[/math].
Ganzrationale Funktion 3. Grades
[math]\displaystyle{ f(x)=4x^3-24x^2+36 }[/math] ist eine ganzrationale Funktion, da der Funktionsterm, [math]\displaystyle{ 4x^3-24x^2+36 }[/math], ein Polynom ist. Der Grad von [math]\displaystyle{ f }[/math] ist [math]\displaystyle{ 3 }[/math]. Die Koeffizienten sind [math]\displaystyle{ 3, -2, 0, 36 }[/math]. Der Graph sieht wie folgt aus: