Stammfunktion: Unterschied zwischen den Versionen

Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
 
Zeile 1: Zeile 1:
Eine Funktion <math>F</math>, deren [[Ableitung]] <math>f</math> ist, heißt Stammfunktion von <math>f</math>. Das unbestimmte Integral ist die Menge aller Stammfunktionen. Das Bilden einer Stammfunktion wird daher als integrieren und umgangssprachlich als "aufleiten" bezeichnet. Mit Hilfe der Stammfunktion werden Flächeninhalte ([[Hauptsatz der Differential- und Integralrechnung]]) ermittelt, die sich zwischen dem [[Graph|Graphen]] der dazugehörigen [[Ableitungsfunktion]] und der x-Achse befinden.
Eine Funktion <math>F</math>, deren [[Ableitung]] <math>f</math> ist, heißt Stammfunktion von <math>f</math>. Das unbestimmte Integral ist die Menge aller Stammfunktionen. Das Bilden einer Stammfunktion wird daher als Integrieren und umgangssprachlich als 'Aufleiten' bezeichnet. Mit Hilfe der Stammfunktion werden Flächeninhalte ([[Hauptsatz der Differential- und Integralrechnung]]) ermittelt, die sich zwischen dem [[Graph|Graphen]] der dazugehörigen [[Ableitungsfunktion]] und der x-Achse befinden.


==Definition==
==Definition==
Zeile 6: Zeile 6:


==Unbestimmtes Integral==
==Unbestimmtes Integral==
Das '''unbestimmte Integral''' von <math>f</math> ist die Menge aller Stammfunktionen von <math>f</math>, welche durch Hinzufügen einer konstanten Funktion <math>C \in \mathbb{R}</math> dargestellt werden können  
Das '''unbestimmte Integral''' von <math>f</math> ist die Menge aller Stammfunktionen von <math>f</math>, welche durch Hinzufügen einer Konstanten <math>C \in \mathbb{R}</math> dargestellt werden können  
:<math>\int f(x) \, dx = F(x) + C</math>.
:<math>\int f(x) \, dx = F(x) + C</math>.