Natürliche Exponentialfunktion: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 28: | Zeile 28: | ||
Wir bilden die Ableitungen von | Wir bilden die Ableitungen von | ||
*f(x)=e^x | *f(x)=e^x | ||
[[Kategorie:Mathematische Funktion]] | |||
[[Kategorie:AHR_WuV_Mathe_GK]] |
Version vom 6. September 2024, 12:20 Uhr
Die natürliche Exponentialfunktion oder e-Funktion ist eine Exponentialfunktion der Form [math]\displaystyle{ f(x)=e^x }[/math] mit der Basis [math]\displaystyle{ e \approx 2,71828... }[/math]. Viele Phänomene aus der Natur werden mit Hilfe der e-Funktion modelliert. Außerdem gilt für die Ableitung [math]\displaystyle{ f'(x)=e^x }[/math].
Euler'sche Zahl e
Die Euler'sche Zahl ist [math]\displaystyle{ e \approx 2,71828... }[/math].
Herleitung der Euler'schen Zahl e
Wir verwenden, dass die Ableitung einer Exponentialfunktion der Form [math]\displaystyle{ f(x)=a^x }[/math] durch [math]\displaystyle{ f'(x)=ca^x }[/math] gegeben ist. Wir setzen [math]\displaystyle{ c=1 }[/math] und ermitteln eine Basis [math]\displaystyle{ a }[/math], so dass [math]\displaystyle{ f(x)=a^x }[/math] die Ableitung [math]\displaystyle{ f'(x)=a^x }[/math] hat:
[math]\displaystyle{ c=1 }[/math]
[math]\displaystyle{ \lim \limits_{h \to 0} \frac{a^h-1}{h}=1 }[/math]
[math]\displaystyle{ \frac{a^h-1}{h} \approx 1 }[/math]
[math]\displaystyle{ a^h-1 \approx h }[/math]
[math]\displaystyle{ a^h \approx h+1 }[/math]
[math]\displaystyle{ a \approx \sqrt[h]{h+1} }[/math]
Lassen wir [math]\displaystyle{ h }[/math] gegen 0 laufen, erhalten wir [math]\displaystyle{ a \approx 2,71828... }[/math]. Dies ist die Euler'sche Zahl [math]\displaystyle{ e }[/math].
Definition
Die Funktion [math]\displaystyle{ f:\mathbb{D}_f \rightarrow \mathbb{R} }[/math] der Form [math]\displaystyle{ f(x)=e^x }[/math] mit der Euler'schen Zahl [math]\displaystyle{ e }[/math] heißt natürliche Exponentialfunktion oder e-Funktion und hat die Ableitung [math]\displaystyle{ f'(x)=e^x }[/math].
Beispiele
Ableitungen von e-Funktionen
Wir bilden die Ableitungen von
- f(x)=e^x