Nullstelle: Unterschied zwischen den Versionen

Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 61: Zeile 61:


===Quadratische Funktion===
===Quadratische Funktion===
Die '''Nullstellen''' einer quadratischen Funktion <math>{f\left(x\right)=x}^2+px+q</math> werden durch Auflösen der Gleichung <math>x^2+px+q=0</math> nach <math>x</math> ausgerechnet. Die Lösung der Gleichung wird mit der '''p-q-Formel''', <math>x=-\frac{p}{2}\pm\sqrt{\left(\frac{p}{2}\right)^2-q}</math>, berechnet. Es können keine, eine oder zwei Lösungen existieren.
Die '''Nullstellen''' einer quadratischen Funktion <math>{f\left(x\right)=x}^2+px+q</math> werden durch Auflösen der Gleichung <math>x^2+px+q=0</math> nach <math>x</math> ausgerechnet. Die Lösung der Gleichung wird mit der '''p-q-Formel''', <math>x=-\frac{p}{2}\pm\sqrt{\left(\frac{p}{2}\right)^2-q}</math>, berechnet. Ist der Wert unter der Wurzel negativ, existiert keine Nullstelle. Ist der Wert unter der Wurzel 0 existiert genau eine Nullstelle und ansonsten existieren zwei Nullstellen.  


====pq-Formel anwenden====
====pq-Formel anwenden====