Exponentialfunktion: Unterschied zwischen den Versionen

Aus FLBK-Wiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 5: Zeile 5:


==Eigenschaften der Exponentialfunktion==
==Eigenschaften der Exponentialfunktion==
[[Datei:ExponentialfunktionVerlauf.png|mini|Graphen der Exponentialfunktionen <math>g_1(x)=2\cdot 3^x,~g_2(x)=2\cdot 0,3^x,~g_3(x)=-2\cdot 3^x,~g_4(x)=-2\cdot 0,3^x</math>]]
[[Datei:ExponentialfunktionVerlauf.png|mini|Graphen der Exponentialfunktionen <math>g_1(x)=2\cdot 3^x</math>, <math>g_2(x)=2\cdot 0,3^x</math>, <math>g_3(x)=-2\cdot 3^x</math>, <math>g_4(x)=-2\cdot 0,3^x</math>]]
Gegeben sei eine allgemeine Exponentialfunktion zur Basis a.
Gegeben sei eine allgemeine Exponentialfunktion zur Basis a.
*Gilt <math>c>0</math> und <math>a>1</math> ist der Graph [[Monotone_Funktion#Definition|streng monoton steigend]] und eine [[Monotone_Funktion#Kr%C3%BCmmung_einer_Funktion|Linkskurve]]. Wir nennen das '''positives Wachstum'''.  
*Gilt <math>c>0</math> und <math>a>1</math> ist der Graph [[Monotone_Funktion#Definition|streng monoton steigend]] und eine [[Monotone_Funktion#Kr%C3%BCmmung_einer_Funktion|Linkskurve]]. Wir nennen das '''positives Wachstum'''.  
Zeile 23: Zeile 23:
==Beispiele==
==Beispiele==
===Exponentialfunktionen mit verschiedenen Basen===
===Exponentialfunktionen mit verschiedenen Basen===
[[Datei:ExponentialfunktionBasen.png|mini|Graphen der Exponentialfunktionen <math>f_1(x)=4^x,~f_2(x)=6^x,~f_3(x)=0,7^x,~f_4(x)=0,3^x</math> mit verschiedenen Basen]]
[[Datei:ExponentialfunktionBasen.png|mini|Graphen der Exponentialfunktionen <math>f_1(x)=4^x</math>, <math>f_2(x)=6^x</math>, <math>f_3(x)=0,7^x</math>, <math>f_4(x)=0,3^x</math> mit verschiedenen Basen]]
Wir betrachten die Exponentialfunktionen <math>f_1(x)=4^x,~f_2(x)=6^x,~f_3(x)=0,7^x,~f_4(x)=0,3^x</math>. Die Basis für die Funktion <math>f_1</math> ist <math>a=4</math>, für jede der Funktionen gilt <math>c=1</math>.  
Wir betrachten die Exponentialfunktionen <math>f_1(x)=4^x,~f_2(x)=6^x,~f_3(x)=0,7^x,~f_4(x)=0,3^x</math>. Die Basis für die Funktion <math>f_1</math> ist <math>a=4</math>, für jede der Funktionen gilt <math>c=1</math>.  


Zeile 31: Zeile 31:


===Exponentialfunktionen mit verschiedenen Faktoren===
===Exponentialfunktionen mit verschiedenen Faktoren===
[[Datei:ExponentialfunktionFaktoren.png|mini|Graphen der Exponentialfunktionen <math>f_5(x)=5 \cdot 3^x,~f_6(x)=0,2\cdot 3^x,~f_7(x)=(-3)\cdot 3^x,~f_8(x)=(-4)\cdot 3^x</math> mit verschienden Faktoren]]
[[Datei:ExponentialfunktionFaktoren.png|mini|Graphen der Exponentialfunktionen <math>f_5(x)=5 \cdot 3^x</math>, <math>f_6(x)=0,2\cdot 3^x</math>, <math>f_7(x)=(-3)\cdot 3^x,</math> <math>f_8(x)=(-4)\cdot 3^x</math> mit verschienden Faktoren]]
Wir betrachten die Exponentialfunktionen <math>f_5(x)=5 \cdot 3^x,~f_6(x)=0,2\cdot 3^x,~f_7(x)=(-3)\cdot 3^x,~f_8(x)=(-4)\cdot 3^x</math>. Für die y-Achsenabschnitte gilt <math>f_5(0)=5 \cdot 3^0=5,~f_6(0)=0,2\cdot 3^0=0,2,~f_7(x)=(-3)\cdot 3^0=-3,~f_8(x)=(-4)\cdot 3^0=-4</math>. Die Schnittpunkte mit der y-Achse lassen sich in den Graphen ablesen. Beispielsweise ist für <math>f_5</math> der Schnittpunkt mit der y-Achse <math>S_y(0|5)</math>.
Wir betrachten die Exponentialfunktionen <math>f_5(x)=5 \cdot 3^x,~f_6(x)=0,2\cdot 3^x,~f_7(x)=(-3)\cdot 3^x,~f_8(x)=(-4)\cdot 3^x</math>. Für die y-Achsenabschnitte gilt <math>f_5(0)=5 \cdot 3^0=5,~f_6(0)=0,2\cdot 3^0=0,2,~f_7(x)=(-3)\cdot 3^0=-3,~f_8(x)=(-4)\cdot 3^0=-4</math>. Die Schnittpunkte mit der y-Achse lassen sich in den Graphen ablesen. Beispielsweise ist für <math>f_5</math> der Schnittpunkt mit der y-Achse <math>S_y(0|5)</math>.


Zeile 47: Zeile 47:


==Beschränkter Abnahmeprozess==
==Beschränkter Abnahmeprozess==
[[Datei:ExponentialfunktionBeschränkterAbnahmeprozess.png|mini|Graph der Exponentialfunktion <math>f(t)=20\cdot 0,8^x+180</math>]]
[[Datei:ExponentialfunktionBeschränkterAbnahmeprozess.png|mini|Graph der Exponentialfunktion <math>f(t)=180\cdot 0,8^x+20</math>]]
Wir backen ein schmackhaftes Zwiebelbrot bei 210 °C und nehmen es anschließend aus dem Ofen. Die Raumtemperatur beträgt 20 °C. Wir modellieren im Folgenden den 30-minütigen Abkühlungsprozess durch eine Exponentialfunktion. Dabei ist <math>t</math> in Minuten und <math>f(t)</math> in °C angegeben.
Wir backen ein schmackhaftes Zwiebelbrot bei 210 °C und nehmen es anschließend aus dem Ofen. Die Raumtemperatur beträgt 20 °C. Wir modellieren im Folgenden den 30-minütigen Abkühlungsprozess durch eine erweiterte Exponentialfunktion der Form <math>f(x)=c \cdot a^x+d</math>. Dabei ist <math>t</math> in Minuten und <math>f(t)</math> in °C angegeben.


Temperaturmessungen des Zweibelbrotes liefern, dass zum Zeitpunkt <math>t=0</math> die Temperatur 200 °C beträgt. Die erweiterte Exponentialfunktion <math>f(t)=20\cdot 0,8^t+280</math> modelliert einen beschränkten Abnahmeprozess.
Da der Abkühlungsprozess 30 Minuten andauert, ist der [[Funktion#Definitions-_und_Wertebereich|Definitionsbereich]] <math>\mathbb{D}_f=[0;30]</math>. Temperaturmessungen des Zweibelbrotes liefern, dass zum Zeitpunkt <math>t=0</math> die Temperatur 200 °C und zum Zeitpunkt <math>t=1</math> die Temperatur 164  °C beträgt. Damit gilt
 
<math>f(0)=c\cdot a^0+20</math>
 
<math>200=c+20</math>
 
<math>180=c</math>
 
Die erweiterte Exponentialfunktion hat also die Form <math>f(x)=180 \cdot a^x+20</math>. Wir müssen die Basis <math>a</math> bestimmen:
 
<math>f(1)=180\cdot a^1+20</math>
 
<math>164=180 \cdot a +20</math>
 
<math>144=180 \cdot a</math>
 
<math>0,8=a</math>
 
Die erweiterte Exponentialfunktion <math>f(t)=180\cdot 0,8^t+20</math> modelliert einen '''beschränkten Abnahmeprozess'''.  


==Beschränktes Wachstum==
==Beschränktes Wachstum==

Version vom 22. August 2024, 07:41 Uhr

Exponentialfunktionen haben die Form [math]\displaystyle{ f(x)=c \cdot a^x }[/math] und spielen insbesondere in Wachstumsprozessen eine wichtige Rolle. Dazu gehören der Zinseszinseffekt, der Bevölkerungswachstum oder die Ausbreitung von Infektionskrankheiten.

Definition

Eine Funktion der Form [math]\displaystyle{ f(x)=c \cdot a^x }[/math] mit [math]\displaystyle{ a,~c \in \mathbb{R},~a,~c \geq 0,~a \neq 1 }[/math] heißt allgemeine Exponentialfunktion zur Basis a. [math]\displaystyle{ c }[/math] ist der y-Achsenabschnitt.

Eigenschaften der Exponentialfunktion

Graphen der Exponentialfunktionen [math]\displaystyle{ g_1(x)=2\cdot 3^x }[/math], [math]\displaystyle{ g_2(x)=2\cdot 0,3^x }[/math], [math]\displaystyle{ g_3(x)=-2\cdot 3^x }[/math], [math]\displaystyle{ g_4(x)=-2\cdot 0,3^x }[/math]

Gegeben sei eine allgemeine Exponentialfunktion zur Basis a.

Nullstellen

Eine allgemeine Exponentialfunktion zur Basis [math]\displaystyle{ a }[/math] der Form [math]\displaystyle{ f(x)=c \cdot a^x }[/math] mit [math]\displaystyle{ a,~c \in \mathbb{R},~a,~c \geq 0,~a \neq 1 }[/math] hat keine Nullstellen.

Spiegelbildliche Exponentialfunktionen

Die Exponentialfunktionen [math]\displaystyle{ f_1(x)=c \cdot a^x }[/math] und [math]\displaystyle{ f_2(x)=c \cdot (\frac{1}{a})^x }[/math] mit [math]\displaystyle{ a,~c \in \mathbb{R},~a,~c \geq 0,~a \neq 1 }[/math] sind spiegelbildlich bezüglich der y-Achse zueinander.

Erweiterte Form

Eine Funktion der Form [math]\displaystyle{ f(x)=c \cdot a^x+d }[/math] mit [math]\displaystyle{ a,~c,~d \in \mathbb{R},~a,~c \geq 0,~a \neq 1 }[/math] heißt erweiterte Exponentialfunktion. Die Gerade [math]\displaystyle{ y=d }[/math] bezeichnen wir als Asymptote. Der y-Achsenabschnitt ist [math]\displaystyle{ c+d }[/math].

Beispiele

Exponentialfunktionen mit verschiedenen Basen

Graphen der Exponentialfunktionen [math]\displaystyle{ f_1(x)=4^x }[/math], [math]\displaystyle{ f_2(x)=6^x }[/math], [math]\displaystyle{ f_3(x)=0,7^x }[/math], [math]\displaystyle{ f_4(x)=0,3^x }[/math] mit verschiedenen Basen

Wir betrachten die Exponentialfunktionen [math]\displaystyle{ f_1(x)=4^x,~f_2(x)=6^x,~f_3(x)=0,7^x,~f_4(x)=0,3^x }[/math]. Die Basis für die Funktion [math]\displaystyle{ f_1 }[/math] ist [math]\displaystyle{ a=4 }[/math], für jede der Funktionen gilt [math]\displaystyle{ c=1 }[/math].

Der y-Achsenabschnitt der Funktion [math]\displaystyle{ f_1 }[/math] wird durch [math]\displaystyle{ f_1(0)=4^0=1 }[/math] berechnet. Der Schnittpunkt mit der y-Achse beträgt [math]\displaystyle{ S_y(0|1) }[/math].

Die Graphen der Funktionen [math]\displaystyle{ f_1 }[/math] und [math]\displaystyle{ f_2 }[/math] zeigen positives Wachstum. Die Graphen der Funktionen [math]\displaystyle{ f_3 }[/math] und [math]\displaystyle{ f_4 }[/math] zeigen negatives Wachstum.

Exponentialfunktionen mit verschiedenen Faktoren

Graphen der Exponentialfunktionen [math]\displaystyle{ f_5(x)=5 \cdot 3^x }[/math], [math]\displaystyle{ f_6(x)=0,2\cdot 3^x }[/math], [math]\displaystyle{ f_7(x)=(-3)\cdot 3^x, }[/math] [math]\displaystyle{ f_8(x)=(-4)\cdot 3^x }[/math] mit verschienden Faktoren

Wir betrachten die Exponentialfunktionen [math]\displaystyle{ f_5(x)=5 \cdot 3^x,~f_6(x)=0,2\cdot 3^x,~f_7(x)=(-3)\cdot 3^x,~f_8(x)=(-4)\cdot 3^x }[/math]. Für die y-Achsenabschnitte gilt [math]\displaystyle{ f_5(0)=5 \cdot 3^0=5,~f_6(0)=0,2\cdot 3^0=0,2,~f_7(x)=(-3)\cdot 3^0=-3,~f_8(x)=(-4)\cdot 3^0=-4 }[/math]. Die Schnittpunkte mit der y-Achse lassen sich in den Graphen ablesen. Beispielsweise ist für [math]\displaystyle{ f_5 }[/math] der Schnittpunkt mit der y-Achse [math]\displaystyle{ S_y(0|5) }[/math].

Die Nullstelle von [math]\displaystyle{ f_5 }[/math] wird durch

[math]\displaystyle{ f_5(x)=0 }[/math]

[math]\displaystyle{ 5 \cdot 3^x=0 }[/math]

berechnet. Es [math]\displaystyle{ 5 \cdot 3^x \neq 0 }[/math] für jedes [math]\displaystyle{ x \in \mathbb{R} }[/math]. Daher hat [math]\displaystyle{ f_5 }[/math] keine Nullstellen.

Spiegelbildliche Exponentialfunktionen

Graphen der Funktionen [math]\displaystyle{ f_9(x)=2^x }[/math] und [math]\displaystyle{ f_{10}(x)=(\frac{1}{2})^x }[/math]

Die Graphen der Funktionen [math]\displaystyle{ f_9(x)=2^x }[/math] und [math]\displaystyle{ f_{10}(x)=(\frac{1}{2})^x }[/math] sind spiegelbildlich bezüglich der y-Achse.

Beschränkter Abnahmeprozess

Graph der Exponentialfunktion [math]\displaystyle{ f(t)=180\cdot 0,8^x+20 }[/math]

Wir backen ein schmackhaftes Zwiebelbrot bei 210 °C und nehmen es anschließend aus dem Ofen. Die Raumtemperatur beträgt 20 °C. Wir modellieren im Folgenden den 30-minütigen Abkühlungsprozess durch eine erweiterte Exponentialfunktion der Form [math]\displaystyle{ f(x)=c \cdot a^x+d }[/math]. Dabei ist [math]\displaystyle{ t }[/math] in Minuten und [math]\displaystyle{ f(t) }[/math] in °C angegeben.

Da der Abkühlungsprozess 30 Minuten andauert, ist der Definitionsbereich [math]\displaystyle{ \mathbb{D}_f=[0;30] }[/math]. Temperaturmessungen des Zweibelbrotes liefern, dass zum Zeitpunkt [math]\displaystyle{ t=0 }[/math] die Temperatur 200 °C und zum Zeitpunkt [math]\displaystyle{ t=1 }[/math] die Temperatur 164 °C beträgt. Damit gilt

[math]\displaystyle{ f(0)=c\cdot a^0+20 }[/math]

[math]\displaystyle{ 200=c+20 }[/math]

[math]\displaystyle{ 180=c }[/math]

Die erweiterte Exponentialfunktion hat also die Form [math]\displaystyle{ f(x)=180 \cdot a^x+20 }[/math]. Wir müssen die Basis [math]\displaystyle{ a }[/math] bestimmen:

[math]\displaystyle{ f(1)=180\cdot a^1+20 }[/math]

[math]\displaystyle{ 164=180 \cdot a +20 }[/math]

[math]\displaystyle{ 144=180 \cdot a }[/math]

[math]\displaystyle{ 0,8=a }[/math]

Die erweiterte Exponentialfunktion [math]\displaystyle{ f(t)=180\cdot 0,8^t+20 }[/math] modelliert einen beschränkten Abnahmeprozess.

Beschränktes Wachstum