Stammfunktion: Unterschied zwischen den Versionen

Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
 
(13 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
Eine Funktion zu der die [[Ableitung]] gebildet wurde, heißt Stammfunktion. Das unbestimmte Integral ist die Menge aller Stammfunktionen. Das Bilden einer Stammfunktion wird daher umgangssprachlich als "aufleiten" bezeichnet. Mit Hilfe der Stammfunktion werden Flächeninhalte (bestimmte Integrale) ermittelt, die sich zwischen dem [[Graph|Graphen]] der dazugehörigen [[Ableitungsfunktion]] und der x-Achse befinden.
Eine Funktion <math>F</math>, deren [[Ableitung]] <math>f</math> ist, heißt Stammfunktion von <math>f</math>. Das unbestimmte Integral ist die Menge aller Stammfunktionen. Das Bilden einer Stammfunktion wird daher als Integrieren und umgangssprachlich als 'Aufleiten' bezeichnet. Mit Hilfe der Stammfunktion werden Flächeninhalte ([[Hauptsatz der Differential- und Integralrechnung]]) ermittelt, die sich zwischen dem [[Graph|Graphen]] der dazugehörigen [[Ableitungsfunktion]] und der x-Achse befinden.


==Definition==
==Definition==
Ist eine Funktion <math>f</math> auf einem Intervall <math>[a; b] \subseteq \mathbb{R}</math> definiert und gibt es eine Funktion <math>F</math>, sodass für alle <math>x</math> aus diesem Intervall <math>F'(x) = f(x)</math> gilt,
Ist eine Funktion <math>f</math> auf einem Intervall <math>[a; b] \subseteq \mathbb{R}</math> definiert und gibt es eine Funktion <math>F</math>, sodass für alle <math>x</math> aus diesem Intervall <math>F'(x) = f(x)</math> gilt,
dann wird <math>F</math> als eine '''Stammfunktion''' von <math>f</math> bezeichnet. Die Funktion <math>f</math> heißt dabei die [[Ableitung]] von <math>F</math>.
dann wird <math>F</math> als eine '''Stammfunktion''' von <math>f</math> bezeichnet. Die Funktion <math>f</math> ist die [[Ableitung]] von <math>F</math>.


==Unbestimmtes Integral==
==Unbestimmtes Integral==
Das '''unbestimmte Integral''' von <math>f</math> ist die Menge aller Stammfunktionen von <math>f</math>, welche durch Hinzufügen einer konstanten Funktion <math>C \in \mathbb{R}</math> dargestellt werden können  
Das '''unbestimmte Integral''' von <math>f</math> ist die Menge aller Stammfunktionen von <math>f</math>, welche durch Hinzufügen einer Konstanten <math>C \in \mathbb{R}</math> dargestellt werden können  
:<math>\int f(x) dx = F(x) + C</math>.
:<math>\int f(x) \, dx = F(x) + C</math>.


==Integrationsregeln==
==Integrationsregeln==
Es sei <math>n \in \mathbb{Z}</math>. Das unbestimmte Integral von <math>f</math> wird mit den folgenden Regeln ermittelt:
Es sei <math>n \in \mathbb{Z}</math>. Das unbestimmte Integral von <math>f</math> wird mit den folgenden Regeln ermittelt:
<html><iframe width="280" height="157.5" src="https://www.youtube.com/embed/g6mqtqI7UQA?si=Pc1b2fsS3C9PXTCb" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe></html>


===Potenzregel===
===Potenzregel===
Für <math>f(x) = x^n</math> mit <math>n \neq -1</math> gilt:
Für eine ganzrationale Funktion <math>f(x) = x^n</math> mit <math>n \neq -1</math> gilt:
<math>\int (x^n) dx = \frac{x^{n+1}}{n+1} + C</math>.
:<math>\int (x^n) \, dx = \frac{x^{n+1}}{n+1} + C</math>
 
Für eine gebrochenrationale Funktion <math>f(x)=\frac{1}{x^n}</math> mit <math>n \in \mathbb{N}^{>1}</math> und <math>x \neq 0 </math> gilt:
:<math>\int (\frac{1}{x^n}) \, dx= \int x^{-n} \, dx=\frac{x^{-n+1}}{-n+1} + C</math>
 
Es sei <math>f(x)=\frac{1}{x}</math>, dann gilt:
:<math>\int (\frac{1}{x}) \, dx =\ln|x|+C</math>
 
Für eine Wurzelfunktion <math>f(x) =\sqrt[n]{x^m}</math> mit <math>\frac{m}{n} \neq -1</math> gilt:
:<math>\int (\sqrt[n]{x^m}) \, dx=\int (x^{\frac{m}{n}}) \, dx = \frac{x^{\frac{m}{n} + 1}}{\frac{m}{n} + 1} + C</math>
 
Für eine Exponentialfunktion <math>f(x) = e^{nx}</math> mit <math>n \neq 0</math> gilt:
:<math>\int e^{nx} \, dx = \frac{1}{n} e^{nx} + C</math>


===Faktorregel===
===Faktorregel===
Für <math>f(x) = c \cdot g(x)</math> mit <math>c \in \mathbb{R}</math> gilt:
Für <math>f(x) = c \cdot g(x)</math> mit <math>c \in \mathbb{R}</math> gilt:
<math>\int (c \cdot g(x)) dx = c \cdot \int g(x) dx</math>.
:<math>\int (c \cdot g(x)) \, dx = c \cdot \int g(x) \, dx</math>


===Summenregel===
===Summenregel===
Für <math>f(x) = g(x) + h(x)</math> gilt:
Für <math>f(x) = g(x) + h(x)</math> gilt:
<math>\int (g(x) + h(x)) dx = \int g(x) dx + \int h(x) dx</math>.
:<math>\int (g(x) + h(x)) \, dx = \int g(x) \, dx + \int h(x) \, dx</math>


==Beispiele==
==Beispiele==
Zeile 28: Zeile 42:
===Potenzregel anwenden===  
===Potenzregel anwenden===  
Das unbestimmte Integral von <math>f(x) = x^3</math> wird durch
Das unbestimmte Integral von <math>f(x) = x^3</math> wird durch
:<math>\int (x^3) dx = \frac{x^{3+1}}{3+1} + C = \frac{x^4}{4} + C</math>
:<math>\int (x^3) \, dx = \frac{x^{3+1}}{3+1} + C = \frac{x^4}{4} + C</math>
berechnet. <math>F(x) = \frac{x^4}{4} + 5</math> ist beispielsweise eine Stammfunktion von <math>f</math>, da <math>F'(x)=x^3=f(x)</math> gilt.
berechnet. <math>F(x) = \frac{x^4}{4} + 5</math> ist beispielsweise eine Stammfunktion von <math>f</math>, da <math>F'(x)=x^3=f(x)</math> gilt.


===Faktor- und Summenregel anwenden===  
===Faktor- und Summenregel anwenden===  
Das unbestimmte Integral der Funktion <math>h(x) = 2x^2 + 3x^3</math> wird durch
Das unbestimmte Integral der Funktion <math>h(x) = 2x^2 + 3x^3</math> wird durch
:<math>\int (2x^2 + 3x^3) dx = \int 2x^2 dx + \int 3x^3 dx= 2 \int x^2 dx + 3\int x^3 dx= \frac{2x^3}{3} + \frac{3x^4}{4} + C</math>
:<math>\int (2x^2 + 3x^3) \, dx = \int 2x^2 \, dx + \int 3x^3 \, dx= 2 \int x^2 \, dx + 3\int x^3 \, dx= \frac{2x^3}{3} + \frac{3x^4}{4} + C</math>
berechnet. <math>H_1(x)=\frac{2x^3}{3} + \frac{3x^4}{4} + 5</math> und <math>H_2(x)=\frac{2x^3}{3} + \frac{3x^4}{4} -19</math> sind Beispiele für Stammfunktionen von <math>h</math>.
berechnet. <math>H_1(x)=\frac{2x^3}{3} + \frac{3x^4}{4} + 5</math> und <math>H_2(x)=\frac{2x^3}{3} + \frac{3x^4}{4} -19</math> sind Beispiele für Stammfunktionen von <math>h</math>.
===Gebrochenrationale Funktion integrieren===
Das unbestimmte Integral der Funktion <math>f(x) = \frac{2}{x} + \frac{3}{x^2}</math> wird durch
:<math>\int \left( \frac{2}{x} + \frac{3}{x^2} \right) \, dx = \int \frac{2}{x} \, dx + \int \frac{3}{x^2} \, dx = 2 \int x^{-1} \, dx + 3 \int x^{-2} \, dx = 2 \ln|x| - \frac{3}{x} + C</math>
berechnet. <math>F_1(x) = 2 \ln|x| - \frac{3}{x} + 7</math> und <math>F_2(x) = 2 \ln|x| - \frac{3}{x} - 10</math> sind Beispiele für Stammfunktionen von <math>f</math>.
===Wurzelfunktion integrieren===
Das unbestimmte Integral der Funktion
<math>f(x) = 3\sqrt{x} + \frac{4}{\sqrt{x}} - 2\sqrt[4]{x^3}</math>
wird durch
:<math>\int \left( 3\sqrt{x} + \frac{4}{\sqrt{x}} - 2\sqrt[4]{x^3} \right) \, dx = \int 3x^{\frac{1}{2}} \, dx + \int 4x^{-\frac{1}{2}} \, dx - \int 2x^{\frac{3}{4}} \, dx</math>
:<math> = 3 \int x^{\frac{1}{2}} \, dx + 4 \int x^{-\frac{1}{2}} \, dx - 2 \int x^{\frac{3}{4}} \, dx</math>
:<math> = 3 \cdot \frac{2}{3} x^{\frac{3}{2}} + 4 \cdot 2x^{\frac{1}{2}} - 2 \cdot \frac{4}{7} x^{\frac{7}{4}}+C</math>
:<math>= 2x^{\frac{3}{2}} + 8x^{\frac{1}{2}} - \frac{8}{7} x^{\frac{7}{4}} + C</math>
<math>F_1(x) = 2x^{\frac{3}{2}} + 8x^{\frac{1}{2}} - \frac{8}{7} x^{\frac{7}{4}} + 5</math> und
<math>F_2(x) = 2x^{\frac{3}{2}} + 8x^{\frac{1}{2}} - \frac{8}{7} x^{\frac{7}{4}} - 12</math>
sind Beispiele für Stammfunktionen von <math>f</math>.
===Exponentialfunktion integieren===
Das unbestimmte Integral der Funktion <math>f(x) = 5e^{3x}</math> wird durch
:<math>\int 5e^{3x} \, dx = 5 \int e^{3x} \, dx= 5 \cdot \frac{1}{3} e^{3x}= \frac{5}{3} e^{3x} + C</math>
berechnet.
<math>F_1(x) = \frac{5}{3} e^{3x} + 4</math> und <math>F_2(x) = \frac{5}{3} e^{3x} - 9</math>
sind Beispiele für Stammfunktionen von <math>f</math>.


[[Kategorie:Integralrechnung]]
[[Kategorie:Integralrechnung]]
[[Kategorie:AHR_WuV_Mathe_GK]]
[[Kategorie:AHR_WuV_Mathe_GK]]