Exponentialfunktion: Unterschied zwischen den Versionen
(8 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 2: | Zeile 2: | ||
==Definition== | ==Definition== | ||
Eine [[Funktion]] der Form <math>f(x)=c \cdot a^x</math> mit <math>a,~c \in \mathbb{R},~a \geq 0,~a \neq 1</math> heißt '''allgemeine Exponentialfunktion zur Basis a'''. <math>c</math> ist der '''y-Achsenabschnitt'''. | Eine [[Funktion]] <math>f:\mathbb{D}_f \rightarrow \mathbb{R}</math> der Form <math>f(x)=c \cdot a^x</math> mit <math>a,~c \in \mathbb{R},~a \geq 0,~a \neq 1</math> heißt '''allgemeine Exponentialfunktion zur Basis a'''. <math>c</math> ist der '''y-Achsenabschnitt'''. | ||
==Ableitung== | |||
Für die Ableitung der allgemeinen Exponentialfunktion zur Basis <math>a</math> der Form <math>f(x)=a^x</math> gilt: | |||
<math> f'(t)=\lim \limits_{h \to 0} \frac{f(t+h)-f(t)}{h}=\lim \limits_{h \to 0} \frac{a^{t+h}-a^{t}}{h}=\lim \limits_{h \to 0} \frac{a^t \cdot a^h-a^{t}}{h}=(\lim \limits_{h \to 0} \frac{a^h-1}{h}) a^t = c \cdot a^t </math> mit <math>c=\lim \limits_{h \to 0} \frac{a^h-1}{h}</math>. | |||
Die Ableitung der Exponentialfunktion ist also wieder eine Exponentialfunktion mit der Basis <math>a</math> und dem y-Achsenabschnitt <math>c=\lim \limits_{h \to 0} \frac{a^h-1}{h}</math>. Mit Hilfe der Taylor-Reihe lässt sich der Grenzwert ermitteln: <math>\lim \limits_{h \to 0} \frac{a^h-1}{h}=ln(a)</math> | |||
Also gilt <math>f'(x)=ln(a)a^x</math>. | |||
==Verlauf der Graphen von Exponentialfunktion== | ==Verlauf der Graphen von Exponentialfunktion== | ||
Zeile 11: | Zeile 20: | ||
*Gilt <math>c<0</math> und <math>0<a<1</math> ist der Graph [[Monotone_Funktion#Definition|streng monoton steigend]] und eine [[Monotone_Funktion#Kr%C3%BCmmung_einer_Funktion|Rechtskurve]]. | *Gilt <math>c<0</math> und <math>0<a<1</math> ist der Graph [[Monotone_Funktion#Definition|streng monoton steigend]] und eine [[Monotone_Funktion#Kr%C3%BCmmung_einer_Funktion|Rechtskurve]]. | ||
*Gilt <math>c<0</math> und <math>a>1</math> ist der Graph [[Monotone_Funktion#Definition|streng monoton fallend]] und eine [[Monotone_Funktion#Kr%C3%BCmmung_einer_Funktion|Rechtskurve]]. | *Gilt <math>c<0</math> und <math>a>1</math> ist der Graph [[Monotone_Funktion#Definition|streng monoton fallend]] und eine [[Monotone_Funktion#Kr%C3%BCmmung_einer_Funktion|Rechtskurve]]. | ||
<html><iframe width="280" height="157.5" src="https://www.youtube.com/embed/o_WQeeVMvt4?si=oAFcTf0FZjIVCsnY" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe></html> | |||
==Spiegelbildliche Exponentialfunktionen== | ==Spiegelbildliche Exponentialfunktionen== | ||
Zeile 16: | Zeile 27: | ||
==Erweiterte Form== | ==Erweiterte Form== | ||
Eine [[Funktion]] der Form <math>f(x)=c \cdot a^x+d</math> mit <math>a,~c,~d \in \mathbb{R},~a \geq 0,~a \neq 1</math> heißt '''erweiterte Exponentialfunktion'''. Die Gerade <math>y=d</math> bezeichnen wir als '''[[Asymptote]]'''. Der '''y-Achsenabschnitt''' ist <math>c+d</math>. | Eine [[Funktion]] <math>f:\mathbb{D}_f \rightarrow \mathbb{R}</math> der Form <math>f(x)=c \cdot a^x+d</math> mit <math>a,~c,~d \in \mathbb{R},~a \geq 0,~a \neq 1</math> heißt '''erweiterte Exponentialfunktion'''. Die Gerade <math>y=d</math> bezeichnen wir als '''[[Asymptote]]'''. Der '''y-Achsenabschnitt''' ist <math>c+d</math>. | ||
==Nullstellen== | ==Nullstellen== | ||
Eine allgemeine Exponentialfunktion zur Basis <math>a</math> der Form <math>f(x)=c \cdot a^x</math> mit <math>a,~c \in \mathbb{R},~a | Eine allgemeine Exponentialfunktion zur Basis <math>a</math> der Form <math>f(x)=c \cdot a^x</math> mit <math>a,~c \in \mathbb{R},~a \geq 0,~a \neq 1</math> hat keine [[Nullstelle|Nullstellen]]. | ||
Die Nullstelle der erweiterten Form existiert, falls <math>\frac{d}{c}<0</math> sowie <math>a>0</math> gilt und wird durch | Die Nullstelle der erweiterten Form existiert, falls <math>\frac{d}{c}<0</math> sowie <math>a>0</math> gilt und wird durch | ||
Zeile 83: | Zeile 94: | ||
Die erweiterte Exponentialfunktion <math>h(t)=(-190) \cdot 0,7^t+210</math> modelliert damit die Abkühlung des Zwiebelbrotes. <math>y=210</math> ist die Asymptote, da für alle <math>t \in \mathbb{D}_h</math> gilt, dass <math>-190\cdot 0,7^t<0</math> ist. Der Graph von <math>h</math> nähert sich also der Geraden <math>y=20</math> beliebig nah an, berührt diese aber nie. Außerdem ist der Graph von <math>h</math> streng monoton steigend und eine Rechtskurve, daher beschreibt <math>h</math> einen '''beschränkten Wachstumsprozess'''. | Die erweiterte Exponentialfunktion <math>h(t)=(-190) \cdot 0,7^t+210</math> modelliert damit die Abkühlung des Zwiebelbrotes. <math>y=210</math> ist die Asymptote, da für alle <math>t \in \mathbb{D}_h</math> gilt, dass <math>-190\cdot 0,7^t<0</math> ist. Der Graph von <math>h</math> nähert sich also der Geraden <math>y=20</math> beliebig nah an, berührt diese aber nie. Außerdem ist der Graph von <math>h</math> streng monoton steigend und eine Rechtskurve, daher beschreibt <math>h</math> einen '''beschränkten Wachstumsprozess'''. | ||
<html><iframe width="280" height="157.5" src="https://www.youtube.com/embed/tApWXGETVRs?si=abRtG5T_-F1kpnnZ" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe></html> | |||
===Beschränkter Abnahmeprozess=== | ===Beschränkter Abnahmeprozess=== | ||
Zeile 107: | Zeile 120: | ||
Die erweiterte Exponentialfunktion <math>f(t)=180\cdot 0,8^t+20</math> modelliert damit die Abkühlung des Zwiebelbrotes. <math>y=20</math> ist die Asymptote, da für alle <math>t \in \mathbb{D}_f</math> gilt, dass <math>180\cdot 0,8^t>0</math> ist. Der Graph von <math>f</math> nähert sich also der Geraden <math>y=20</math> beliebig nah an, berührt diese aber nie. Außerdem ist der Graph von <math>f</math> streng monoton fallend und eine Linkskurve, daher beschreibt <math>f</math> einen '''beschränkten Abnahmeprozess'''. | Die erweiterte Exponentialfunktion <math>f(t)=180\cdot 0,8^t+20</math> modelliert damit die Abkühlung des Zwiebelbrotes. <math>y=20</math> ist die Asymptote, da für alle <math>t \in \mathbb{D}_f</math> gilt, dass <math>180\cdot 0,8^t>0</math> ist. Der Graph von <math>f</math> nähert sich also der Geraden <math>y=20</math> beliebig nah an, berührt diese aber nie. Außerdem ist der Graph von <math>f</math> streng monoton fallend und eine Linkskurve, daher beschreibt <math>f</math> einen '''beschränkten Abnahmeprozess'''. | ||
<html><iframe width="280" height="157.5" src="https://www.youtube.com/embed/L4AfwtEBp_M?si=YTsMMnpdZki8O_33" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe></html> | |||
[[Kategorie:Mathematische Funktion]] | [[Kategorie:Mathematische Funktion]] | ||
[[Kategorie:AHR_WuV_Mathe_GK]] | [[Kategorie:AHR_WuV_Mathe_GK]] |