Stammfunktion: Unterschied zwischen den Versionen

Aus FLBK-Wiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
 
(4 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
Eine Funktion zu der die [[Ableitung]] gebildet wurde, heißt Stammfunktion. Das unbestimmte Integral ist die Menge aller Stammfunktionen. Das Bilden einer Stammfunktion wird daher umgangssprachlich als "aufleiten" bezeichnet. Mit Hilfe der Stammfunktion werden Flächeninhalte ([[Hauptsatz der Differential- und Integralrechnung]]) ermittelt, die sich zwischen dem [[Graph|Graphen]] der dazugehörigen [[Ableitungsfunktion]] und der x-Achse befinden.
Eine Funktion <math>F</math>, deren [[Ableitung]] <math>f</math> ist, heißt Stammfunktion von <math>f</math>. Das unbestimmte Integral ist die Menge aller Stammfunktionen. Das Bilden einer Stammfunktion wird daher als Integrieren und umgangssprachlich als 'Aufleiten' bezeichnet. Mit Hilfe der Stammfunktion werden Flächeninhalte ([[Hauptsatz der Differential- und Integralrechnung]]) ermittelt, die sich zwischen dem [[Graph|Graphen]] der dazugehörigen [[Ableitungsfunktion]] und der x-Achse befinden.


==Definition==
==Definition==
Ist eine Funktion <math>f</math> auf einem Intervall <math>[a; b] \subseteq \mathbb{R}</math> definiert und gibt es eine Funktion <math>F</math>, sodass für alle <math>x</math> aus diesem Intervall <math>F'(x) = f(x)</math> gilt,
Ist eine Funktion <math>f</math> auf einem Intervall <math>[a; b] \subseteq \mathbb{R}</math> definiert und gibt es eine Funktion <math>F</math>, sodass für alle <math>x</math> aus diesem Intervall <math>F'(x) = f(x)</math> gilt,
dann wird <math>F</math> als eine '''Stammfunktion''' von <math>f</math> bezeichnet. Die Funktion <math>f</math> heißt dabei die [[Ableitung]] von <math>F</math>.
dann wird <math>F</math> als eine '''Stammfunktion''' von <math>f</math> bezeichnet. Die Funktion <math>f</math> ist die [[Ableitung]] von <math>F</math>.


==Unbestimmtes Integral==
==Unbestimmtes Integral==
Das '''unbestimmte Integral''' von <math>f</math> ist die Menge aller Stammfunktionen von <math>f</math>, welche durch Hinzufügen einer konstanten Funktion <math>C \in \mathbb{R}</math> dargestellt werden können  
Das '''unbestimmte Integral''' von <math>f</math> ist die Menge aller Stammfunktionen von <math>f</math>, welche durch Hinzufügen einer Konstanten <math>C \in \mathbb{R}</math> dargestellt werden können  
:<math>\int f(x) dx = F(x) + C</math>.
:<math>\int f(x) \, dx = F(x) + C</math>.


==Integrationsregeln==
==Integrationsregeln==
Zeile 16: Zeile 16:
===Potenzregel===
===Potenzregel===
Für eine ganzrationale Funktion <math>f(x) = x^n</math> mit <math>n \neq -1</math> gilt:
Für eine ganzrationale Funktion <math>f(x) = x^n</math> mit <math>n \neq -1</math> gilt:
:<math>\int (x^n) dx = \frac{x^{n+1}}{n+1} + C</math>
:<math>\int (x^n) \, dx = \frac{x^{n+1}}{n+1} + C</math>


Für eine gebrochenrationale Funktion <math>f(x)=\frac{1}{x^n}</math> mit <math>n \in \mathbb{N}^{>1}</math> und <math>x \neq 0 </math> gilt:
Für eine gebrochenrationale Funktion <math>f(x)=\frac{1}{x^n}</math> mit <math>n \in \mathbb{N}^{>1}</math> und <math>x \neq 0 </math> gilt:
:<math>\int (\frac{1}{x^n}) dx= \int x^{-n} dx=-\frac{x^{-n+1}}{n-1} + C</math>
:<math>\int (\frac{1}{x^n}) \, dx= \int x^{-n} \, dx=\frac{x^{-n+1}}{-n+1} + C</math>


Es sei <math>f(x)=\frac{1}{x}</math>, dann gilt:
Es sei <math>f(x)=\frac{1}{x}</math>, dann gilt:
:<math>\int (\frac{1}{x})dx =\ln|x|+C</math>
:<math>\int (\frac{1}{x}) \, dx =\ln|x|+C</math>


Für eine Wurzelfunktion <math>f(x) =\sqrt[n]{x^m}</math> mit <math>\frac{m}{n} \neq -1</math> gilt:
Für eine Wurzelfunktion <math>f(x) =\sqrt[n]{x^m}</math> mit <math>\frac{m}{n} \neq -1</math> gilt:
:<math>\int (\sqrt[n]{x^m})dx=\int (x^{\frac{m}{n}}) dx = \frac{x^{\frac{m}{n} + 1}}{\frac{m}{n} + 1} + C</math>
:<math>\int (\sqrt[n]{x^m}) \, dx=\int (x^{\frac{m}{n}}) \, dx = \frac{x^{\frac{m}{n} + 1}}{\frac{m}{n} + 1} + C</math>


Für eine Exponentialfunktion <math>f(x) = e^{nx}</math> mit <math>n \neq 0</math> gilt:
Für eine Exponentialfunktion <math>f(x) = e^{nx}</math> mit <math>n \neq 0</math> gilt:
:<math>\int e^{nx} dx = \frac{1}{n} e^{nx} + C</math>
:<math>\int e^{nx} \, dx = \frac{1}{n} e^{nx} + C</math>


===Faktorregel===
===Faktorregel===
Für <math>f(x) = c \cdot g(x)</math> mit <math>c \in \mathbb{R}</math> gilt:
Für <math>f(x) = c \cdot g(x)</math> mit <math>c \in \mathbb{R}</math> gilt:
:<math>\int (c \cdot g(x)) dx = c \cdot \int g(x) dx</math>
:<math>\int (c \cdot g(x)) \, dx = c \cdot \int g(x) \, dx</math>


===Summenregel===
===Summenregel===
Für <math>f(x) = g(x) + h(x)</math> gilt:
Für <math>f(x) = g(x) + h(x)</math> gilt:
:<math>\int (g(x) + h(x)) dx = \int g(x) dx + \int h(x) dx</math>
:<math>\int (g(x) + h(x)) \, dx = \int g(x) \, dx + \int h(x) \, dx</math>


==Beispiele==
==Beispiele==
Zeile 42: Zeile 42:
===Potenzregel anwenden===  
===Potenzregel anwenden===  
Das unbestimmte Integral von <math>f(x) = x^3</math> wird durch
Das unbestimmte Integral von <math>f(x) = x^3</math> wird durch
:<math>\int (x^3) dx = \frac{x^{3+1}}{3+1} + C = \frac{x^4}{4} + C</math>
:<math>\int (x^3) \, dx = \frac{x^{3+1}}{3+1} + C = \frac{x^4}{4} + C</math>
berechnet. <math>F(x) = \frac{x^4}{4} + 5</math> ist beispielsweise eine Stammfunktion von <math>f</math>, da <math>F'(x)=x^3=f(x)</math> gilt.
berechnet. <math>F(x) = \frac{x^4}{4} + 5</math> ist beispielsweise eine Stammfunktion von <math>f</math>, da <math>F'(x)=x^3=f(x)</math> gilt.


===Faktor- und Summenregel anwenden===  
===Faktor- und Summenregel anwenden===  
Das unbestimmte Integral der Funktion <math>h(x) = 2x^2 + 3x^3</math> wird durch
Das unbestimmte Integral der Funktion <math>h(x) = 2x^2 + 3x^3</math> wird durch
:<math>\int (2x^2 + 3x^3) dx = \int 2x^2 dx + \int 3x^3 dx= 2 \int x^2 dx + 3\int x^3 dx= \frac{2x^3}{3} + \frac{3x^4}{4} + C</math>
:<math>\int (2x^2 + 3x^3) \, dx = \int 2x^2 \, dx + \int 3x^3 \, dx= 2 \int x^2 \, dx + 3\int x^3 \, dx= \frac{2x^3}{3} + \frac{3x^4}{4} + C</math>
berechnet. <math>H_1(x)=\frac{2x^3}{3} + \frac{3x^4}{4} + 5</math> und <math>H_2(x)=\frac{2x^3}{3} + \frac{3x^4}{4} -19</math> sind Beispiele für Stammfunktionen von <math>h</math>.
berechnet. <math>H_1(x)=\frac{2x^3}{3} + \frac{3x^4}{4} + 5</math> und <math>H_2(x)=\frac{2x^3}{3} + \frac{3x^4}{4} -19</math> sind Beispiele für Stammfunktionen von <math>h</math>.


===Gebrochenrationale Funktion integrieren===
===Gebrochenrationale Funktion integrieren===
Das unbestimmte Integral der Funktion <math>f(x) = \frac{2}{x} + \frac{3}{x^2}</math> wird durch
Das unbestimmte Integral der Funktion <math>f(x) = \frac{2}{x} + \frac{3}{x^2}</math> wird durch
:<math>\int \left( \frac{2}{x} + \frac{3}{x^2} \right) dx = \int \frac{2}{x} dx + \int \frac{3}{x^2} dx = 2 \int x^{-1} dx + 3 \int x^{-2} dx = 2 \ln|x| - \frac{3}{x} + C</math>
:<math>\int \left( \frac{2}{x} + \frac{3}{x^2} \right) \, dx = \int \frac{2}{x} \, dx + \int \frac{3}{x^2} \, dx = 2 \int x^{-1} \, dx + 3 \int x^{-2} \, dx = 2 \ln|x| - \frac{3}{x} + C</math>
berechnet. <math>F_1(x) = 2 \ln|x| - \frac{3}{x} + 7</math> und <math>F_2(x) = 2 \ln|x| - \frac{3}{x} - 10</math> sind Beispiele für Stammfunktionen von <math>f</math>.
berechnet. <math>F_1(x) = 2 \ln|x| - \frac{3}{x} + 7</math> und <math>F_2(x) = 2 \ln|x| - \frac{3}{x} - 10</math> sind Beispiele für Stammfunktionen von <math>f</math>.


Zeile 59: Zeile 59:
<math>f(x) = 3\sqrt{x} + \frac{4}{\sqrt{x}} - 2\sqrt[4]{x^3}</math>
<math>f(x) = 3\sqrt{x} + \frac{4}{\sqrt{x}} - 2\sqrt[4]{x^3}</math>
wird durch
wird durch
:<math>\int \left( 3\sqrt{x} + \frac{4}{\sqrt{x}} - 2\sqrt[4]{x^3} \right) dx = \int 3x^{\frac{1}{2}} dx + \int 4x^{-\frac{1}{2}} dx - \int 2x^{\frac{3}{4}} dx</math>
:<math>\int \left( 3\sqrt{x} + \frac{4}{\sqrt{x}} - 2\sqrt[4]{x^3} \right) \, dx = \int 3x^{\frac{1}{2}} \, dx + \int 4x^{-\frac{1}{2}} \, dx - \int 2x^{\frac{3}{4}} \, dx</math>
:<math> = 3 \int x^{\frac{1}{2}} dx + 4 \int x^{-\frac{1}{2}} dx - 2 \int x^{\frac{3}{4}} dx</math>
:<math> = 3 \int x^{\frac{1}{2}} \, dx + 4 \int x^{-\frac{1}{2}} \, dx - 2 \int x^{\frac{3}{4}} \, dx</math>
:<math> = 3 \cdot \frac{2}{3} x^{\frac{3}{2}} + 4 \cdot 2x^{\frac{1}{2}} - 2 \cdot \frac{4}{7} x^{\frac{7}{4}}</math>
:<math> = 3 \cdot \frac{2}{3} x^{\frac{3}{2}} + 4 \cdot 2x^{\frac{1}{2}} - 2 \cdot \frac{4}{7} x^{\frac{7}{4}}+C</math>
:<math>= 2x^{\frac{3}{2}} + 8x^{\frac{1}{2}} - \frac{8}{7} x^{\frac{7}{4}} + C</math>
:<math>= 2x^{\frac{3}{2}} + 8x^{\frac{1}{2}} - \frac{8}{7} x^{\frac{7}{4}} + C</math>


<math>F_1(x) = 2x^{\frac{3}{2}} + 8x^{\frac{1}{2}} - \frac{8}{7} x^{\frac{7}{4}} + 5</math> und
<math>F_1(x) = 2x^{\frac{3}{2}} + 8x^{\frac{1}{2}} - \frac{8}{7} x^{\frac{7}{4}} + 5</math> und
<math>F_2(x) = 2x^{\frac{3}{2}} + 8x^{\frac{1}{2}} - \frac{8}{7} x^{\frac{7}{4}} - 12</math>
<math>F_2(x) = 2x^{\frac{3}{2}} + 8x^{\frac{1}{2}} - \frac{8}{7} x^{\frac{7}{4}} - 12</math>
sind Beispiele für Stammfunktionen von <math>f</math>.
===Exponentialfunktion integieren===
Das unbestimmte Integral der Funktion <math>f(x) = 5e^{3x}</math> wird durch
:<math>\int 5e^{3x} \, dx = 5 \int e^{3x} \, dx= 5 \cdot \frac{1}{3} e^{3x}= \frac{5}{3} e^{3x} + C</math>
berechnet.
<math>F_1(x) = \frac{5}{3} e^{3x} + 4</math> und <math>F_2(x) = \frac{5}{3} e^{3x} - 9</math>
sind Beispiele für Stammfunktionen von <math>f</math>.
sind Beispiele für Stammfunktionen von <math>f</math>.


[[Kategorie:Integralrechnung]]
[[Kategorie:Integralrechnung]]
[[Kategorie:AHR_WuV_Mathe_GK]]
[[Kategorie:AHR_WuV_Mathe_GK]]

Aktuelle Version vom 24. Februar 2025, 18:26 Uhr

Eine Funktion [math]\displaystyle{ F }[/math], deren Ableitung [math]\displaystyle{ f }[/math] ist, heißt Stammfunktion von [math]\displaystyle{ f }[/math]. Das unbestimmte Integral ist die Menge aller Stammfunktionen. Das Bilden einer Stammfunktion wird daher als Integrieren und umgangssprachlich als 'Aufleiten' bezeichnet. Mit Hilfe der Stammfunktion werden Flächeninhalte (Hauptsatz der Differential- und Integralrechnung) ermittelt, die sich zwischen dem Graphen der dazugehörigen Ableitungsfunktion und der x-Achse befinden.

Definition

Ist eine Funktion [math]\displaystyle{ f }[/math] auf einem Intervall [math]\displaystyle{ [a; b] \subseteq \mathbb{R} }[/math] definiert und gibt es eine Funktion [math]\displaystyle{ F }[/math], sodass für alle [math]\displaystyle{ x }[/math] aus diesem Intervall [math]\displaystyle{ F'(x) = f(x) }[/math] gilt, dann wird [math]\displaystyle{ F }[/math] als eine Stammfunktion von [math]\displaystyle{ f }[/math] bezeichnet. Die Funktion [math]\displaystyle{ f }[/math] ist die Ableitung von [math]\displaystyle{ F }[/math].

Unbestimmtes Integral

Das unbestimmte Integral von [math]\displaystyle{ f }[/math] ist die Menge aller Stammfunktionen von [math]\displaystyle{ f }[/math], welche durch Hinzufügen einer Konstanten [math]\displaystyle{ C \in \mathbb{R} }[/math] dargestellt werden können

[math]\displaystyle{ \int f(x) \, dx = F(x) + C }[/math].

Integrationsregeln

Es sei [math]\displaystyle{ n \in \mathbb{Z} }[/math]. Das unbestimmte Integral von [math]\displaystyle{ f }[/math] wird mit den folgenden Regeln ermittelt:

Potenzregel

Für eine ganzrationale Funktion [math]\displaystyle{ f(x) = x^n }[/math] mit [math]\displaystyle{ n \neq -1 }[/math] gilt:

[math]\displaystyle{ \int (x^n) \, dx = \frac{x^{n+1}}{n+1} + C }[/math]

Für eine gebrochenrationale Funktion [math]\displaystyle{ f(x)=\frac{1}{x^n} }[/math] mit [math]\displaystyle{ n \in \mathbb{N}^{\gt 1} }[/math] und [math]\displaystyle{ x \neq 0 }[/math] gilt:

[math]\displaystyle{ \int (\frac{1}{x^n}) \, dx= \int x^{-n} \, dx=\frac{x^{-n+1}}{-n+1} + C }[/math]

Es sei [math]\displaystyle{ f(x)=\frac{1}{x} }[/math], dann gilt:

[math]\displaystyle{ \int (\frac{1}{x}) \, dx =\ln|x|+C }[/math]

Für eine Wurzelfunktion [math]\displaystyle{ f(x) =\sqrt[n]{x^m} }[/math] mit [math]\displaystyle{ \frac{m}{n} \neq -1 }[/math] gilt:

[math]\displaystyle{ \int (\sqrt[n]{x^m}) \, dx=\int (x^{\frac{m}{n}}) \, dx = \frac{x^{\frac{m}{n} + 1}}{\frac{m}{n} + 1} + C }[/math]

Für eine Exponentialfunktion [math]\displaystyle{ f(x) = e^{nx} }[/math] mit [math]\displaystyle{ n \neq 0 }[/math] gilt:

[math]\displaystyle{ \int e^{nx} \, dx = \frac{1}{n} e^{nx} + C }[/math]

Faktorregel

Für [math]\displaystyle{ f(x) = c \cdot g(x) }[/math] mit [math]\displaystyle{ c \in \mathbb{R} }[/math] gilt:

[math]\displaystyle{ \int (c \cdot g(x)) \, dx = c \cdot \int g(x) \, dx }[/math]

Summenregel

Für [math]\displaystyle{ f(x) = g(x) + h(x) }[/math] gilt:

[math]\displaystyle{ \int (g(x) + h(x)) \, dx = \int g(x) \, dx + \int h(x) \, dx }[/math]

Beispiele

Potenzregel anwenden

Das unbestimmte Integral von [math]\displaystyle{ f(x) = x^3 }[/math] wird durch

[math]\displaystyle{ \int (x^3) \, dx = \frac{x^{3+1}}{3+1} + C = \frac{x^4}{4} + C }[/math]

berechnet. [math]\displaystyle{ F(x) = \frac{x^4}{4} + 5 }[/math] ist beispielsweise eine Stammfunktion von [math]\displaystyle{ f }[/math], da [math]\displaystyle{ F'(x)=x^3=f(x) }[/math] gilt.

Faktor- und Summenregel anwenden

Das unbestimmte Integral der Funktion [math]\displaystyle{ h(x) = 2x^2 + 3x^3 }[/math] wird durch

[math]\displaystyle{ \int (2x^2 + 3x^3) \, dx = \int 2x^2 \, dx + \int 3x^3 \, dx= 2 \int x^2 \, dx + 3\int x^3 \, dx= \frac{2x^3}{3} + \frac{3x^4}{4} + C }[/math]

berechnet. [math]\displaystyle{ H_1(x)=\frac{2x^3}{3} + \frac{3x^4}{4} + 5 }[/math] und [math]\displaystyle{ H_2(x)=\frac{2x^3}{3} + \frac{3x^4}{4} -19 }[/math] sind Beispiele für Stammfunktionen von [math]\displaystyle{ h }[/math].

Gebrochenrationale Funktion integrieren

Das unbestimmte Integral der Funktion [math]\displaystyle{ f(x) = \frac{2}{x} + \frac{3}{x^2} }[/math] wird durch

[math]\displaystyle{ \int \left( \frac{2}{x} + \frac{3}{x^2} \right) \, dx = \int \frac{2}{x} \, dx + \int \frac{3}{x^2} \, dx = 2 \int x^{-1} \, dx + 3 \int x^{-2} \, dx = 2 \ln|x| - \frac{3}{x} + C }[/math]

berechnet. [math]\displaystyle{ F_1(x) = 2 \ln|x| - \frac{3}{x} + 7 }[/math] und [math]\displaystyle{ F_2(x) = 2 \ln|x| - \frac{3}{x} - 10 }[/math] sind Beispiele für Stammfunktionen von [math]\displaystyle{ f }[/math].

Wurzelfunktion integrieren

Das unbestimmte Integral der Funktion [math]\displaystyle{ f(x) = 3\sqrt{x} + \frac{4}{\sqrt{x}} - 2\sqrt[4]{x^3} }[/math] wird durch

[math]\displaystyle{ \int \left( 3\sqrt{x} + \frac{4}{\sqrt{x}} - 2\sqrt[4]{x^3} \right) \, dx = \int 3x^{\frac{1}{2}} \, dx + \int 4x^{-\frac{1}{2}} \, dx - \int 2x^{\frac{3}{4}} \, dx }[/math]
[math]\displaystyle{ = 3 \int x^{\frac{1}{2}} \, dx + 4 \int x^{-\frac{1}{2}} \, dx - 2 \int x^{\frac{3}{4}} \, dx }[/math]
[math]\displaystyle{ = 3 \cdot \frac{2}{3} x^{\frac{3}{2}} + 4 \cdot 2x^{\frac{1}{2}} - 2 \cdot \frac{4}{7} x^{\frac{7}{4}}+C }[/math]
[math]\displaystyle{ = 2x^{\frac{3}{2}} + 8x^{\frac{1}{2}} - \frac{8}{7} x^{\frac{7}{4}} + C }[/math]

[math]\displaystyle{ F_1(x) = 2x^{\frac{3}{2}} + 8x^{\frac{1}{2}} - \frac{8}{7} x^{\frac{7}{4}} + 5 }[/math] und [math]\displaystyle{ F_2(x) = 2x^{\frac{3}{2}} + 8x^{\frac{1}{2}} - \frac{8}{7} x^{\frac{7}{4}} - 12 }[/math] sind Beispiele für Stammfunktionen von [math]\displaystyle{ f }[/math].

Exponentialfunktion integieren

Das unbestimmte Integral der Funktion [math]\displaystyle{ f(x) = 5e^{3x} }[/math] wird durch

[math]\displaystyle{ \int 5e^{3x} \, dx = 5 \int e^{3x} \, dx= 5 \cdot \frac{1}{3} e^{3x}= \frac{5}{3} e^{3x} + C }[/math]

berechnet. [math]\displaystyle{ F_1(x) = \frac{5}{3} e^{3x} + 4 }[/math] und [math]\displaystyle{ F_2(x) = \frac{5}{3} e^{3x} - 9 }[/math] sind Beispiele für Stammfunktionen von [math]\displaystyle{ f }[/math].