Stammfunktion
Stammfunktion und unbestimmtes Integral
Ist eine Funktion [math]\displaystyle{ f }[/math] auf einem Intervall [math]\displaystyle{ [a; b] \subseteq \mathbb{R} }[/math] definiert und gibt es eine Funktion [math]\displaystyle{ F }[/math], sodass für alle [math]\displaystyle{ x }[/math] aus diesem Intervall gilt: [math]\displaystyle{ F'(x) = f(x) }[/math], dann wird [math]\displaystyle{ F }[/math] als eine Stammfunktion von [math]\displaystyle{ f }[/math] bezeichnet. Die Funktion [math]\displaystyle{ f }[/math] heißt dabei die Ableitung von [math]\displaystyle{ F }[/math].
Das unbestimmte Integral von [math]\displaystyle{ f }[/math] ist die Menge aller Stammfunktionen von [math]\displaystyle{ f }[/math], welche durch Hinzufügen einer konstanten Funktion [math]\displaystyle{ C \in \mathbb{R} }[/math] dargestellt werden können: [math]\displaystyle{ \int f(x) , dx = F(x) + C }[/math].
==Definition== Die Funktion [math]\displaystyle{ F(x) }[/math] beschreibt den Flächeninhalt unter der Funktion [math]\displaystyle{ f(x) }[/math] von einem Startwert bis zu einem variablen Endwert [math]\displaystyle{ x }[/math], wobei die Konstante [math]\displaystyle{ C }[/math] den Startwert beeinflusst. Jede Änderung von [math]\displaystyle{ C }[/math] verschiebt die Funktion vertikal, ohne ihre Ableitung zu verändern.
Integrationsregeln
Die Stammfunktion [math]\displaystyle{ F(x) }[/math] wird mit den folgenden Regeln ermittelt:
Potenzregel
Für [math]\displaystyle{ f(x) = x^n }[/math] mit [math]\displaystyle{ n \neq -1 }[/math] gilt: [math]\displaystyle{ \int x^n , dx = \frac{x^{n+1}}{n+1} + C }[/math].
Faktorregel
Für [math]\displaystyle{ f(x) = c \cdot g(x) }[/math] mit [math]\displaystyle{ c \in \mathbb{R} }[/math] gilt: [math]\displaystyle{ \int c \cdot g(x) , dx = c \cdot \int g(x) , dx }[/math].
Summenregel
Für [math]\displaystyle{ f(x) = g(x) + h(x) }[/math] gilt: [math]\displaystyle{ \int \left(g(x) + h(x)\right) , dx = \int g(x) , dx + \int h(x) , dx }[/math].
Beispiele
===Potenzregel anwenden=== Die Stammfunktion von [math]\displaystyle{ f(x) = x^3 }[/math] lautet: [math]\displaystyle{ \int x^3 , dx = \frac{x^{3+1}}{3+1} + C = \frac{x^4}{4} + C }[/math].
===Summenregel anwenden=== Für [math]\displaystyle{ h(x) = 2x^2 + 3x^3 }[/math] ergibt sich: [math]\displaystyle{ \int (2x^2 + 3x^3) , dx = \int 2x^2 , dx + \int 3x^3 , dx }[/math]. Berechnung: [math]\displaystyle{ \int 2x^2 , dx = 2 \cdot \frac{x^{2+1}}{2+1} = \frac{2x^3}{3} }[/math], [math]\displaystyle{ \int 3x^3 , dx = 3 \cdot \frac{x^{3+1}}{3+1} = \frac{3x^4}{4} }[/math]. Zusammen ergibt sich: [math]\displaystyle{ \int (2x^2 + 3x^3) , dx = \frac{2x^3}{3} + \frac{3x^4}{4} + C }[/math].
===Graphische Bedeutung der Stammfunktion=== Die Stammfunktion [math]\displaystyle{ F(x) }[/math] beschreibt den Flächeninhalt unter der Kurve [math]\displaystyle{ f(x) }[/math]. Dieser Flächeninhalt kann positiv oder negativ sein, je nachdem, ob die Kurve über oder unter der [math]\displaystyle{ x }[/math]-Achse liegt.
===Höhere Integrationen=== Wird die Stammfunktion erneut integriert, spricht man von mehrfachen Integralen. Diese geben eine Verallgemeinerung des Flächeninhalts für mehrdimensionale Probleme an.
==Zusammenhang mit der Ableitung== Während die Ableitung [math]\displaystyle{ f'(x) }[/math] die lokale Änderungsrate angibt, liefert die Stammfunktion [math]\displaystyle{ F(x) }[/math] eine globale Betrachtung des Funktionsverlaufs. Der Übergang von [math]\displaystyle{ f(x) }[/math] zu [math]\displaystyle{ F(x) }[/math] entspricht der Integration, der Übergang von [math]\displaystyle{ F(x) }[/math] zu [math]\displaystyle{ f(x) }[/math] der Differentiation.