Definition

Es sei [math]\displaystyle{ S=\{e_1;...;e_n\} }[/math] die Ergebnismenge eines Zufallsexperiments und [math]\displaystyle{ A }[/math] ein Ereignis. Die Zahlen [math]\displaystyle{ P\left(e_i\right) }[/math] mit

1. [math]\displaystyle{ 0 \leq P(e_i) \leq 1 }[/math] für alle [math]\displaystyle{ i \in \mathbb{N} }[/math] mit [math]\displaystyle{ 1 \leq i \leq n }[/math]

2. [math]\displaystyle{ P\left(S\right)=P\left(e_1\right)+\ldots+P\left(e_n\right)\mathrm{\ =1} }[/math]

3. [math]\displaystyle{ P\left(A\right)=\sum_{e\in A} P\left(e\right) }[/math]

nennt man die Wahrscheinlichkeit des Ergebnisses [math]\displaystyle{ e_i }[/math] für [math]\displaystyle{ i,n\ \in\mathbb{N} }[/math] mit [math]\displaystyle{ 1\ \leq i\ \leq n }[/math]. Die Zuordnung [math]\displaystyle{ e_i\mapsto P\left(e_i\right) }[/math] heißt Wahrscheinlichkeitsverteilung.

Beispiele

Wahrscheinlichkeitsverteilung einfacher Münzwurf

Beim Münzwurf gilt beispielsweise [math]\displaystyle{ Kopf\mapsto\frac{1}{2} }[/math] und [math]\displaystyle{ Zahl\mapsto\frac{1}{2} }[/math]. Die Zuordnung wird oft als Tabelle dargestellt:

Ergebnis [math]\displaystyle{ e_i }[/math] Wahrscheinlichkeit [math]\displaystyle{ P(e_i) }[/math]
Kopf [math]\displaystyle{ \frac{1}{2} }[/math]
Zahl [math]\displaystyle{ \frac{1}{2} }[/math]

Wahrscheinlichkeitsverteilung einmaliger Wurf eines Würfels