Exponentialfunktion

Aus FLBK-Wiki
Zur Navigation springen Zur Suche springen

Exponentialfunktionen haben die Form [math]\displaystyle{ f(x)=c \cdot a^x }[/math] und spielen insbesondere in Wachstumsprozessen eine wichtige Rolle. Dazu gehören der Zinseszinseffekt, der Bevölkerungswachstum oder die Ausbreitung von Infektionskrankheiten.

Definition

Eine Funktion der Form [math]\displaystyle{ f(x)=c \cdot a^x }[/math] mit [math]\displaystyle{ a,~c \in \mathbb{R},~a,~c \geq 0,~a \neq 1 }[/math] heißt allgemeine Exponentialfunktion zur Basis a.

Nullstellen

Eine allgemeine Exponentialfunktion zur Basis [math]\displaystyle{ a }[/math] der Form [math]\displaystyle{ f(x)=c \cdot a^x }[/math] mit [math]\displaystyle{ a,~c \in \mathbb{R},~a,~c \geq 0,~a \neq 1 }[/math] hat keine Nullstellen.

Spiegelbildliche Exponentialfunktionen

Die Exponentialfunktionen [math]\displaystyle{ f_1(x)=c \cdot a^x }[/math] und [math]\displaystyle{ f_2(x)=c \cdot (\frac{1}{a})^x }[/math] mit [math]\displaystyle{ a,~c \in \mathbb{R},~a,~c \geq 0,~a \neq 1 }[/math] sind spiegelbildlich bezüglich der y-Achse zueinander.

Erweiterte Form

Eine Funktion der Form [math]\displaystyle{ f(x)=c \cdot a^x+d }[/math] mit [math]\displaystyle{ a,~c,~d \in \mathbb{R},~a,~c \geq 0,~a \neq 1 }[/math] heißt erweiterte Exponentialfunktion. Die Gerade [math]\displaystyle{ y=d }[/math] bezeichnen wir als Asymptote. Der y-Achsenabschnitt ist [math]\displaystyle{ c+d }[/math].

Beispiele

Exponentialfunktionen mit verschiedenen Basen

Graphen der Exponentialfunktionen [math]\displaystyle{ f_1(x)=4^x,~f_2(x)=6^x,~f_3(x)=0,7^x,~f_4(x)=0,3^x }[/math] mit verschiedenen Basen

Wir betrachten die Exponentialfunktionen [math]\displaystyle{ f_1(x)=4^x,~f_2(x)=6^x,~f_3(x)=0,7^x,~f_4(x)=0,3^x }[/math]. Die Basis für die Funktion [math]\displaystyle{ f_1 }[/math] ist [math]\displaystyle{ a=4 }[/math], für jede der Funktionen gilt [math]\displaystyle{ c=1 }[/math].

Der y-Achsenabschnitt der Funktion [math]\displaystyle{ f_1 }[/math] wird durch [math]\displaystyle{ f_1(0)=4^0=1 }[/math] berechnet. Der Schnittpunkt mit der y-Achse beträgt [math]\displaystyle{ S_y(0|1) }[/math].

Die Graphen der Funktionen [math]\displaystyle{ f_1 }[/math] und [math]\displaystyle{ f_2 }[/math] zeigen positives Wachstum. Die Graphen der Funktionen [math]\displaystyle{ f_3 }[/math] und [math]\displaystyle{ f_4 }[/math] zeigen negatives Wachstum.

Exponentialfunktionen mit verschiedenen Faktoren

Graphen der Exponentialfunktionen [math]\displaystyle{ f_5(x)=5 \cdot 3^x,~f_6(x)=0,2\cdot 3^x,~f_7(x)=(-3)\cdot 3^x,~f_8(x)=(-4)\cdot 3^x }[/math] mit verschienden Faktoren

Wir betrachten die Exponentialfunktionen [math]\displaystyle{ f_5(x)=5 \cdot 3^x,~f_6(x)=0,2\cdot 3^x,~f_7(x)=(-3)\cdot 3^x,~f_8(x)=(-4)\cdot 3^x }[/math]. Für die y-Achsenabschnitte gilt [math]\displaystyle{ f_5(0)=5 \cdot 3^0=5,~f_6(0)=0,2\cdot 3^0=0,2,~f_7(x)=(-3)\cdot 3^0=-3,~f_8(x)=(-4)\cdot 3^0=-4 }[/math]. Die Schnittpunkte mit der y-Achse lassen sich in den Graphen ablesen. Beispielsweise ist für [math]\displaystyle{ f_5 }[/math] der Schnittpunkt mit der y-Achse [math]\displaystyle{ S_y(0|5) }[/math].

Die Nullstelle von [math]\displaystyle{ f_5 }[/math] wird durch

[math]\displaystyle{ f_5(x)=0 }[/math]

[math]\displaystyle{ 5 \cdot 3^x=0 }[/math]

berechnet. Es [math]\displaystyle{ 5 \cdot 3^x \neq 0 }[/math] für jedes [math]\displaystyle{ x \in \mathbb{R} }[/math]. Daher hat [math]\displaystyle{ f_5 }[/math] keine Nullstellen.

Spiegelbildliche Exponentialfunktionen

Graphen der Funktionen [math]\displaystyle{ f_9(x)=2^x }[/math] und [math]\displaystyle{ f_{10}(x)=(\frac{1}{2})^x }[/math]

Die Graphen der Funktionen [math]\displaystyle{ f_9(x)=2^x }[/math] und [math]\displaystyle{ f_{10}(x)=(\frac{1}{2})^x }[/math] sind spiegelbildlich bezüglich der y-Achse.

Beschränkter Abnahmeprozess

Die erweiterte Exponentialfunktion [math]\displaystyle{ f(x)=45\cdot 0,5^x+35 }[/math] modelliert einen beschränkten Abnahmeprozess.

Beschränktes Wachstum