Exponentialfunktion: Unterschied zwischen den Versionen

Keine Bearbeitungszusammenfassung
Zeile 4: Zeile 4:
Eine [[Funktion]] der Form <math>f(x)=c \cdot a^x</math> mit <math>c \in \mathbb{R},~a \geq 0,~a \neq 1</math> heißt '''allgemeine Exponentialfunktion zur Basis a'''.  
Eine [[Funktion]] der Form <math>f(x)=c \cdot a^x</math> mit <math>c \in \mathbb{R},~a \geq 0,~a \neq 1</math> heißt '''allgemeine Exponentialfunktion zur Basis a'''.  


<math>c</math> ist der '''y-Achsenabschnitt'''. Der '''Schnittpunkt mit der y-Achse''' ist <math>S_y(0|c)</math>. Gilt <math>a>1</math> und <math>c>0</math> steigt der Graph [[Monotone_Funktion#Definition|streng monoton]] an. Wir nennen das '''positives Wachstum'''. Gilt <math>0<a<1</math> und <math>c>0</math> fällt der Graph [[Monotone_Funktion#Definition|streng monoton]]. Wir nennen das '''negatives Wachstum'''.
<math>c</math> ist der '''y-Achsenabschnitt'''. Der '''Schnittpunkt mit der y-Achse''' ist <math>S_y(0|c)</math>. Gilt <math>a>1</math> und <math>c>0</math> steigt der Graph [[Monotone_Funktion#Definition|streng monoton]] an. Wir nennen das '''positives Wachstum'''. Gilt <math>0<a<1</math> und <math>c>0</math> fällt der Graph [[Monotone_Funktion#Definition|streng monoton]]. Wir nennen das '''negatives Wachstum'''.  


==Nullstellen==
==Nullstellen==
Zeile 11: Zeile 11:
==Beispiele==
==Beispiele==
===Exponentialfunktionen mit verschiedenen Basen===
===Exponentialfunktionen mit verschiedenen Basen===
Eine [[lineare Funktion]] der Form <math>f(x)=mx+b</math> ist eine ganzrationale Funktion. Der Funktionsterm lässt sich auch als <math>mx^1+b</math> schreiben und ist damit ein Polynom mit dem Grad <math>1</math>. Die Koeffizienten sind <math>m, b</math>.  
[[Datei:ExponentialfunktionBasen.png|mini|Graphen der Exponentialfunktionen mit verschiedenen Basen]]
Wir betrachten die Exponentialfunktionen <math>f_1(x)=4^x,~f_2(x)=6^x,~f_3(x)=0,7^x,~f_4(x)=0,3^x</math>. Die Basis für die Funktion <math>f_1</math> ist <math>a=4</math>, für jede der Funktionen gilt <math>c=1</math>.  
 
Der y-Achsenabschnitt der Funktion <math>f_1</math> wird durch <math>f_1(0)=4^0=1</math> berechnet. Der Schnittpunkt mit der y-Achse beträgt <math>S_y(0|1)</math>.
 
Die Graphen der Funktionen <math>f_1</math> und <math>f_2</math> zeigen positives Wachstum. Die Graphen der Funktionen <math>f_3</math> und <math>f_4</math> zeigen negatives Wachstum.
 
Die Nullstelle von <math>f_1</math> wird durch
 
<math>f_1(x)=0</math>
 
<math>4^x=0</math>
 
berechnet. Es <math>4^x \neq 0</math> für jedes <math>x \in \mathbb{R}</math>. Daher hat <math>f_1</math> keine Nullstellen.
 
===Exponentialfunktionen mit verschiedenen Faktoren===
===Exponentialfunktionen mit verschiedenen Faktoren===
[[Datei:ExponentialfunktionFaktoren.png|mini]]
Die [[quadratische Funktion]] <math>f(x)=-2x^2+3x+5</math> ist eine ganzrationale Funktion mit Grad <math>2</math> und den Koeffizienten <math>-2,3,5</math>.
Die [[quadratische Funktion]] <math>f(x)=-2x^2+3x+5</math> ist eine ganzrationale Funktion mit Grad <math>2</math> und den Koeffizienten <math>-2,3,5</math>.


===Ganzrationale Funktion 3. Grades===
===Ganzrationale Funktion 3. Grades===
<math>f(x)=4x^3-24x^2+36</math> ist eine ganzrationale Funktion, da der Funktionsterm, <math>4x^3-24x^2+36</math>, ein Polynom ist. Der Grad von <math>f</math> ist <math>3</math>. Die Koeffizienten sind <math>3, -2, 0, 36</math>. Der Graph sieht wie folgt aus:
<math>f(x)=4x^3-24x^2+36</math> ist eine ganzrationale Funktion, da der Funktionsterm, <math>4x^3-24x^2+36</math>, ein Polynom ist. Der Grad von <math>f</math> ist <math>3</math>. Die Koeffizienten sind <math>3, -2, 0, 36</math>. Der Graph sieht wie folgt aus:
[[Datei:GanzrationaleFunktionBeispiel.png|mini|Graph der ganzrationalen Funktionen<math>f(x)=4x^3-24x^2+24</math>]]


[[Kategorie:Mathematische Funktion]]
[[Kategorie:Mathematische Funktion]]
[[Kategorie:FHR_WuV_Mathe]]
[[Kategorie:FHR_WuV_Mathe]]