Stammfunktion: Unterschied zwischen den Versionen

Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
Eine Funktion zu der die [[Ableitung]] gebildet wurde, heißt Stammfunktion. Das unbestimmte Integral ist die Menge aller Stammfunktionen. Das Bilden einer Stammfunktion wird daher umgangssprachlich als "aufleiten" bezeichnet. Mit Hilfe der Stammfunktion werden Flächeninhalte (bestimmte Integrale) ermittelt, die sich zwischen dem [[Graph|Graphen]] der dazugehörigen [[Ableitungsfunktion]] und der x-Achse befinden.
Eine Funktion zu der die [[Ableitung]] gebildet wurde, heißt Stammfunktion. Das unbestimmte Integral ist die Menge aller Stammfunktionen. Das Bilden einer Stammfunktion wird daher umgangssprachlich als "aufleiten" bezeichnet. Mit Hilfe der Stammfunktion werden Flächeninhalte ([[Hauptsatz der Differential- und Integralrechnung]]) ermittelt, die sich zwischen dem [[Graph|Graphen]] der dazugehörigen [[Ableitungsfunktion]] und der x-Achse befinden.


==Definition==
==Definition==