Stammfunktion: Unterschied zwischen den Versionen

Die Seite wurde neu angelegt: „==Stammfunktion und unbestimmtes Integral== Ist eine Funktion <math>f</math> auf einem Intervall <math>[a; b] \subseteq \mathbb{R}</math> definiert und gibt es eine Funktion <math>F</math>, sodass für alle <math>x</math> aus diesem Intervall gilt: <math>F'(x) = f(x)</math>, dann wird <math>F</math> als eine '''Stammfunktion''' von <math>f</math> bezeichnet. Die Funktion <math>f</math> heißt dabei die '''Ableitung''' von <math>F</math>. Das '''unbestim…“
 
Keine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
==Stammfunktion und unbestimmtes Integral==
==Definition==
Die Funktion <math>F(x)</math> beschreibt den Flächeninhalt unter der Funktion <math>f(x)</math> von einem Startwert bis zu einem variablen Endwert <math>x</math>, wobei die Konstante <math>C</math> den Startwert beeinflusst. Jede Änderung von <math>C</math> verschiebt die Funktion vertikal, ohne ihre Ableitung zu verändern.
 
==Unbestimmtes Integral==


Ist eine Funktion <math>f</math> auf einem Intervall <math>[a; b] \subseteq \mathbb{R}</math> definiert und gibt es eine Funktion <math>F</math>, sodass für alle <math>x</math> aus diesem Intervall gilt:
Ist eine Funktion <math>f</math> auf einem Intervall <math>[a; b] \subseteq \mathbb{R}</math> definiert und gibt es eine Funktion <math>F</math>, sodass für alle <math>x</math> aus diesem Intervall gilt:
Zeile 7: Zeile 10:
Das '''unbestimmte Integral''' von <math>f</math> ist die Menge aller Stammfunktionen von <math>f</math>, welche durch Hinzufügen einer konstanten Funktion <math>C \in \mathbb{R}</math> dargestellt werden können:
Das '''unbestimmte Integral''' von <math>f</math> ist die Menge aller Stammfunktionen von <math>f</math>, welche durch Hinzufügen einer konstanten Funktion <math>C \in \mathbb{R}</math> dargestellt werden können:
<math>\int f(x) , dx = F(x) + C</math>.
<math>\int f(x) , dx = F(x) + C</math>.
==Definition== Die Funktion <math>F(x)</math> beschreibt den Flächeninhalt unter der Funktion <math>f(x)</math> von einem Startwert bis zu einem variablen Endwert <math>x</math>, wobei die Konstante <math>C</math> den Startwert beeinflusst. Jede Änderung von <math>C</math> verschiebt die Funktion vertikal, ohne ihre Ableitung zu verändern.


==Integrationsregeln==
==Integrationsregeln==