Exponentialfunktion: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
|||
| Zeile 2: | Zeile 2: | ||
==Definition== | ==Definition== | ||
Eine [[Funktion]] der Form <math>f(x)=c \cdot a^x</math> mit <math>a,~c \in \mathbb{R},~a,~c \geq 0,~a \neq 1</math> heißt '''allgemeine Exponentialfunktion zur Basis a'''. | Eine [[Funktion]] der Form <math>f(x)=c \cdot a^x</math> mit <math>a,~c \in \mathbb{R},~a,~c \geq 0,~a \neq 1</math> heißt '''allgemeine Exponentialfunktion zur Basis a'''. <math>c</math> ist der '''y-Achsenabschnitt'''. | ||
==Eigenschaften der Exponentialfunktion== | |||
[[Datei:ExponentialfunktionVerlauf.png|mini|Graphen der Exponentialfunktionen <math>g_1(x)=2\cdot 3^x,~g_2(x)=2\cdot 0,3^x,~g_3(x)=-2\cdot 3^x,~g_4(x)=-2\cdot 0,3^x</math>]] | |||
Gegeben sei eine allgemeine Exponentialfunktion zur Basis a. | |||
*Gilt <math>c>0</math> und <math>a>1</math> ist der Graph [[Monotone_Funktion#Definition|streng monoton steigend]] und eine [[Monotone_Funktion#Kr%C3%BCmmung_einer_Funktion|Linkskurve]]. Wir nennen das '''positives Wachstum'''. | |||
*Gilt <math>c>0</math> und <math>0<a<1</math> ist der Graph [[Monotone_Funktion#Definition|streng monoton fallend]] und eine [[Monotone_Funktion#Kr%C3%BCmmung_einer_Funktion|Linkskurve]]. Wir nennen das '''negatives Wachstum'''. | |||
*Gilt <math>c<0</math> und <math>0<a<1</math> ist der Graph [[Monotone_Funktion#Definition|streng monoton steigend]] und eine [[Monotone_Funktion#Kr%C3%BCmmung_einer_Funktion|Rechtskurve]]. | |||
*Gilt <math>c<0</math> und <math>a>1</math> ist der Graph [[Monotone_Funktion#Definition|streng monoton fallend]] und eine [[Monotone_Funktion#Kr%C3%BCmmung_einer_Funktion|Rechtskurve]]. | |||
==Nullstellen== | ==Nullstellen== | ||