Quadratische Funktion: Unterschied zwischen den Versionen

Keine Bearbeitungszusammenfassung
 
(2 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 2: Zeile 2:


==Definition==
==Definition==
Eine Funktion der Form <math>f\left(x\right)=ax^2+bx+c</math> mit <math>a\neq0</math> heißt '''quadratische Funktion''' in '''Normalform''', ihr [[Graph]] heißt '''Parabel'''. <math>a</math> heißt '''Streckungsfaktor''', wenn für den [[Betragsfunktion|Betrag]] <math>|a|>1</math> gilt und '''Stauchungsfaktor''', wenn für den [[Betragsfunktion|Betrag]] <math>|a|<1</math> gilt.
Eine Funktion der Form <math>f\left(x\right)=ax^2+bx+c</math> mit <math>a,~b,~c \in \mathbb{R},~a \neq 0</math> heißt '''quadratische Funktion''' in '''Normalform''', ihr [[Graph]] heißt '''Parabel'''. <math>a</math> heißt '''Streckungsfaktor''', wenn für den [[Betragsfunktion|Betrag]] <math>|a|>1</math> gilt und '''Stauchungsfaktor''', wenn für den [[Betragsfunktion|Betrag]] <math>|a|<1</math> gilt. <math>c</math> ist der '''y-Achsenabschnitt'''.


Für <math>a>0</math> ist die Parabel nach '''oben geöffnet''', für <math>a<0</math> ist die Parabel nach '''unten geöffnet'''. Der tiefste bzw. höchster Punkt heißt '''Scheitelpunkt''' oder '''Scheitel S'''. Der Graph von <math>f(x)=x^2</math> heißt '''Normalparabel'''.
Für <math>a>0</math> ist die Parabel nach '''oben geöffnet''', für <math>a<0</math> ist die Parabel nach '''unten geöffnet'''. Der tiefste bzw. höchster Punkt heißt '''Scheitelpunkt''' oder '''Scheitel S'''. Der Graph von <math>f(x)=x^2</math> heißt '''Normalparabel'''.
Zeile 136: Zeile 136:


[[Kategorie:Mathematische Funktion]]
[[Kategorie:Mathematische Funktion]]
[[Kategorie:FHR Mathematik]]
[[Kategorie:FHR_WuV_Mathe]]