Erwartungswert: Unterschied zwischen den Versionen

Keine Bearbeitungszusammenfassung
 
(5 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 2: Zeile 2:


==Definition==
==Definition==
Es sei <math>S=\{x_1,x_2,...,x_n\}</math> die [[Zufallsexperiment#Definition|Ergebnismenge]] eines [[Zufallsexperiment#Definition|Zufallsexperiments]] mit <math>n \in \mathbb{N}</math> und <math>x_1,x_2,...,x_n \in \mathbb{R}</math>. Für die [[Zufallsvariable]] <math>X</math> und die [[Wahrscheinlichkeitsverteilung]] <math>P:S \rightarrow \mathbb{R}</math> sei <math>P(X=x_i)</math> die [[Wahrscheinlichkeitsverteilung|Wahrscheinlichkeit]] des Ergebnisses <math>x_i</math> mit <math>1 \leq i \leq n</math>. Dann ist <math>\mu=E\left(X\right)=x_1\cdot P(X=x_1)+x_2\cdot P(X=x_2)+\ldots+x_n\cdot P(X=x_n)</math> der '''Erwartungswert''' der Wahrscheinlichkeitsverteilung.
Es sei <math>S=\{x_1,x_2,...,x_n\}</math> die [[Zufallsexperiment#Definition|Ergebnismenge]] eines [[Zufallsexperiment#Definition|Zufallsexperiments]] mit <math>n \in \mathbb{N}</math> und <math>x_1,x_2,...,x_n \in \mathbb{R}</math>. Für die [[Zufallsvariable]] <math>X</math> und die [[Wahrscheinlichkeitsverteilung]] <math>P:S \rightarrow \mathbb{R}</math> sei <math>P(X=x_i)</math> die [[Wahrscheinlichkeitsverteilung|Wahrscheinlichkeit]] des Ergebnisses <math>x_i</math> mit <math>1 \leq i \leq n</math>. Dann ist <math>\mu=E\left(X\right)=x_1\cdot P(X=x_1)+x_2\cdot P(X=x_2)+\ldots+x_n\cdot P(X=x_n)</math> der '''Erwartungswert''' der Zufallsvariable.


<html><iframe width="280" height="157.5" src="https://www.youtube.com/embed/z3SaOb0y6Ug?si=3nvQPoCqJsooVLFo" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe></html>
<html><iframe width="280" height="157.5" src="https://www.youtube.com/embed/z3SaOb0y6Ug?si=3nvQPoCqJsooVLFo" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe></html>
Zeile 11: Zeile 11:
==Beispiele==
==Beispiele==
===Erwartungswert beim dreifachen Münzwurf===
===Erwartungswert beim dreifachen Münzwurf===
Für das [[Zufallsexperiment]] des dreifachen Münzwurfes mit der [[Zufallsvariable]] <math>X</math>, Anzahl von Zahl, und der [[Wahrscheinlichkeitsverteilung]] <math>P(X=0)=0,125</math>, <math>P(X=1)=0,375</math>, <math>P(X=2)=0,375</math> und <math>P(X=3)=0,125</math>, wird der '''Erwartungswert''' durch <math>E\left(X\right)=0\cdot0,125+1\cdot0,375+2\cdot0,375+3\cdot0,125=1,5</math> berechnet.  
Für das [[Zufallsexperiment]] des dreifachen Münzwurfes mit der [[Zufallsvariable]] <math>X</math>, Anzahl von Zahl, und der [[Wahrscheinlichkeitsverteilung]] <math>P(X=0)=0,125</math>, <math>P(X=1)=0,375</math>, <math>P(X=2)=0,375</math> und <math>P(X=3)=0,125</math>, wird der Erwartungswert durch <math>E\left(X\right)=0\cdot0,125+1\cdot0,375+2\cdot0,375+3\cdot0,125=1,5</math> berechnet.


===Einfacher Münzwurf als faires Spiel===
===Einfacher Münzwurf als faires Spiel===
Zeile 22: Zeile 22:
*<math>P(X=1)=\frac{1}{2}</math>
*<math>P(X=1)=\frac{1}{2}</math>
*<math>P(X=-1)=\frac{1}{2}</math>.
*<math>P(X=-1)=\frac{1}{2}</math>.
Der Erwartungswert berechnet sich durch <math>E(x)=1 \cdot P(X=1)+(-1) \cdot P(X=-1)=1 \cdot \frac{1}{2} + (-1) \cdot \frac{1}{2}=\frac{1}{2}-\frac{1}{2}=0</math>. Das Spiel ist also fair. Auf lange Sicht gewinnt weder der Teilnehmer noch der Anbieter des Spiels.
Der Erwartungswert berechnet sich durch <math>E(X)=1 \cdot P(X=1)+(-1) \cdot P(X=-1)=1 \cdot \frac{1}{2} + (-1) \cdot \frac{1}{2}=\frac{1}{2}-\frac{1}{2}=0</math>. Das Spiel ist also fair. Auf lange Sicht gewinnt weder der Teilnehmer noch der Anbieter des Spiels.


[[Kategorie:Wahrscheinlichkeitsrechnung]]
[[Kategorie:Wahrscheinlichkeitsrechnung]]
[[Kategorie:Fachabitur]]
[[Kategorie:FHR_WuV_Mathe]]
[[Kategorie:AHR_WuV_Mathe_GK]]