Stammfunktion: Unterschied zwischen den Versionen

Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
 
(2 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
Eine Funktion zu der die [[Ableitung]] gebildet wurde, heißt Stammfunktion. Das unbestimmte Integral ist die Menge aller Stammfunktionen. Das Bilden einer Stammfunktion wird daher umgangssprachlich als "aufleiten" bezeichnet. Mit Hilfe der Stammfunktion werden Flächeninhalte ([[Hauptsatz der Differential- und Integralrechnung]]) ermittelt, die sich zwischen dem [[Graph|Graphen]] der dazugehörigen [[Ableitungsfunktion]] und der x-Achse befinden.
Eine Funktion <math>F</math>, deren [[Ableitung]] <math>f</math> ist, heißt Stammfunktion von <math>f</math>. Das unbestimmte Integral ist die Menge aller Stammfunktionen. Das Bilden einer Stammfunktion wird daher als Integrieren und umgangssprachlich als 'Aufleiten' bezeichnet. Mit Hilfe der Stammfunktion werden Flächeninhalte ([[Hauptsatz der Differential- und Integralrechnung]]) ermittelt, die sich zwischen dem [[Graph|Graphen]] der dazugehörigen [[Ableitungsfunktion]] und der x-Achse befinden.


==Definition==
==Definition==
Ist eine Funktion <math>f</math> auf einem Intervall <math>[a; b] \subseteq \mathbb{R}</math> definiert und gibt es eine Funktion <math>F</math>, sodass für alle <math>x</math> aus diesem Intervall <math>F'(x) = f(x)</math> gilt,
Ist eine Funktion <math>f</math> auf einem Intervall <math>[a; b] \subseteq \mathbb{R}</math> definiert und gibt es eine Funktion <math>F</math>, sodass für alle <math>x</math> aus diesem Intervall <math>F'(x) = f(x)</math> gilt,
dann wird <math>F</math> als eine '''Stammfunktion''' von <math>f</math> bezeichnet. Die Funktion <math>f</math> heißt dabei die [[Ableitung]] von <math>F</math>.
dann wird <math>F</math> als eine '''Stammfunktion''' von <math>f</math> bezeichnet. Die Funktion <math>f</math> ist die [[Ableitung]] von <math>F</math>.


==Unbestimmtes Integral==
==Unbestimmtes Integral==
Das '''unbestimmte Integral''' von <math>f</math> ist die Menge aller Stammfunktionen von <math>f</math>, welche durch Hinzufügen einer konstanten Funktion <math>C \in \mathbb{R}</math> dargestellt werden können  
Das '''unbestimmte Integral''' von <math>f</math> ist die Menge aller Stammfunktionen von <math>f</math>, welche durch Hinzufügen einer Konstanten <math>C \in \mathbb{R}</math> dargestellt werden können  
:<math>\int f(x) \, dx = F(x) + C</math>.
:<math>\int f(x) \, dx = F(x) + C</math>.


Zeile 19: Zeile 19:


Für eine gebrochenrationale Funktion <math>f(x)=\frac{1}{x^n}</math> mit <math>n \in \mathbb{N}^{>1}</math> und <math>x \neq 0 </math> gilt:
Für eine gebrochenrationale Funktion <math>f(x)=\frac{1}{x^n}</math> mit <math>n \in \mathbb{N}^{>1}</math> und <math>x \neq 0 </math> gilt:
:<math>\int (\frac{1}{x^n}) \, dx= \int x^{-n} \, dx=-\frac{x^{-n+1}}{n-1} + C</math>
:<math>\int (\frac{1}{x^n}) \, dx= \int x^{-n} \, dx=\frac{x^{-n+1}}{-n+1} + C</math>


Es sei <math>f(x)=\frac{1}{x}</math>, dann gilt:
Es sei <math>f(x)=\frac{1}{x}</math>, dann gilt:
Zeile 61: Zeile 61:
:<math>\int \left( 3\sqrt{x} + \frac{4}{\sqrt{x}} - 2\sqrt[4]{x^3} \right) \, dx = \int 3x^{\frac{1}{2}} \, dx + \int 4x^{-\frac{1}{2}} \, dx - \int 2x^{\frac{3}{4}} \, dx</math>
:<math>\int \left( 3\sqrt{x} + \frac{4}{\sqrt{x}} - 2\sqrt[4]{x^3} \right) \, dx = \int 3x^{\frac{1}{2}} \, dx + \int 4x^{-\frac{1}{2}} \, dx - \int 2x^{\frac{3}{4}} \, dx</math>
:<math> = 3 \int x^{\frac{1}{2}} \, dx + 4 \int x^{-\frac{1}{2}} \, dx - 2 \int x^{\frac{3}{4}} \, dx</math>
:<math> = 3 \int x^{\frac{1}{2}} \, dx + 4 \int x^{-\frac{1}{2}} \, dx - 2 \int x^{\frac{3}{4}} \, dx</math>
:<math> = 3 \cdot \frac{2}{3} x^{\frac{3}{2}} + 4 \cdot 2x^{\frac{1}{2}} - 2 \cdot \frac{4}{7} x^{\frac{7}{4}}</math>
:<math> = 3 \cdot \frac{2}{3} x^{\frac{3}{2}} + 4 \cdot 2x^{\frac{1}{2}} - 2 \cdot \frac{4}{7} x^{\frac{7}{4}}+C</math>
:<math>= 2x^{\frac{3}{2}} + 8x^{\frac{1}{2}} - \frac{8}{7} x^{\frac{7}{4}} + C</math>
:<math>= 2x^{\frac{3}{2}} + 8x^{\frac{1}{2}} - \frac{8}{7} x^{\frac{7}{4}} + C</math>