Varianz (Statistik): Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
|||
Zeile 7: | Zeile 7: | ||
==Varianz und Häufigkeiten== | ==Varianz und Häufigkeiten== | ||
Es sei <math>a_i</math> die absolute Häufigkeit der Merkmalsausprägung <math>x_i</math> eines quantitativen Merkmals mit <math>n,a_i\in\mathbb{N}</math>, <math>i \in \{1,...,n\}</math>, <math>x_i \in \mathbb{R}</math> und <math>\bar{x}</math> das [[Arithmetisches_Mittel|arithmetische Mittel]]. Der Erhebungsumfang ist <math>n</math>. Der Wert <math>s^2=\frac{a_1\cdot (x_1-\bar{x})^2+a_2 \cdot (x_1-\bar{x})^2+...+a_n \cdot (x_n-\bar{x})^n}{n}</math> heißt '''Varianz'''. | Es sei <math>a_i</math> die [[H%C3%A4ufigkeit#Definition|absolute Häufigkeit]] der [[H%C3%A4ufigkeit#Statistische_Begriffe|Merkmalsausprägung]] <math>x_i</math> eines [[H%C3%A4ufigkeit#Statistische_Begriffe|quantitativen Merkmals]] mit <math>n,a_i\in\mathbb{N}</math>, <math>i \in \{1,...,n\}</math>, <math>x_i \in \mathbb{R}</math> und <math>\bar{x}</math> das [[Arithmetisches_Mittel|arithmetische Mittel]]. Der [[H%C3%A4ufigkeit#Statistische_Begriffe|Erhebungsumfang]] ist <math>n</math>. Der Wert <math>s^2=\frac{a_1\cdot (x_1-\bar{x})^2+a_2 \cdot (x_1-\bar{x})^2+...+a_n \cdot (x_n-\bar{x})^n}{n}</math> heißt '''Varianz'''. | ||
==Beispiele== | ==Beispiele== |