Quadratische Funktion: Unterschied zwischen den Versionen
Zeile 36: | Zeile 36: | ||
Eine Funktion der Form <math>f\left(x\right)=a({x-e)}^2+f</math> mit <math>a\neq0</math> heißt quadratische Funktion in '''Scheitelpunktform'''. Der Scheitelpunkt ist <math>S(e|f)</math>. Der Faktor <math>a</math> ist in der Scheitelpunktform und der Normalform der Gleiche. | Eine Funktion der Form <math>f\left(x\right)=a({x-e)}^2+f</math> mit <math>a\neq0</math> heißt quadratische Funktion in '''Scheitelpunktform'''. Der Scheitelpunkt ist <math>S(e|f)</math>. Der Faktor <math>a</math> ist in der Scheitelpunktform und der Normalform der Gleiche. | ||
[[Datei:QuadratischeFunktionenBeispielQuadFktScheitelpf.png|mini|Graph der Funktion <math>f\left(x\right)=-2({x-2)}^2+1</math>]] | |||
===Beispiel=== | ===Beispiel=== | ||
Wir betrachten die Funktion <math>f\left(x\right)=-2({x-2)}^2+1</math>. Der Scheitelpunkt ist dann <math>S(2|1)</math>. Man kann die rechte Seite der Funktion weiter auflösen, um von der Scheitelpunktform zur Normalform zu kommen: | Wir betrachten die Funktion <math>f\left(x\right)=-2({x-2)}^2+1</math>. Der Scheitelpunkt ist dann <math>S(2|1)</math>. Man kann die rechte Seite der Funktion weiter auflösen, um von der Scheitelpunktform zur Normalform zu kommen: | ||
Zeile 46: | Zeile 47: | ||
<math>f\left(x\right)=-2x^2+8x-7</math> | <math>f\left(x\right)=-2x^2+8x-7</math> | ||
Der Graph der Funktion ist auf der rechten Seite aufgelistet. Der Schnittpunkt mit der y-Achse ist <math>(0|-7)</math>. |