Hauptsatz der Differential- und Integralrechnung: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
|||
| Zeile 4: | Zeile 4: | ||
Der Flächeninhalt zwischen dem Graphen einer Funktion <math>f</math> und der x-Achse im Intervall <math>[0;x]</math> wird durch den Funktionswert einer '''Flächeninhaltsfunktion''' <math>A</math> ermittelt. | Der Flächeninhalt zwischen dem Graphen einer Funktion <math>f</math> und der x-Achse im Intervall <math>[0;x]</math> wird durch den Funktionswert einer '''Flächeninhaltsfunktion''' <math>A</math> ermittelt. | ||
Es sei <math>F</math> die [[Stammfunktion]] zu einer Funktion <math>f</math> mit der Konstanten <math>C=0</math>, dann ist <math>F</math> die Flächeninhaltsfunktion zu <math>f</math>. | Es sei <math>F</math> die [[Stammfunktion]] zu einer [[ganzrationale_Funktion|ganzrationalen Funktion]] <math>f</math> mit der Konstanten <math>C=0</math>, dann ist <math>F</math> die Flächeninhaltsfunktion zu <math>f</math>. | ||
<html><iframe width="280" height="157.5" src="https://www.youtube.com/embed/r-iUbclLabI?si=a5pPkIEuYHEhuoWi" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe></html> | <html><iframe width="280" height="157.5" src="https://www.youtube.com/embed/r-iUbclLabI?si=a5pPkIEuYHEhuoWi" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe></html> | ||
| Zeile 139: | Zeile 139: | ||
==Integralfunktion== | ==Integralfunktion== | ||
Es sei <math>f</math> eine auf dem Intervall <math>[a;b]</math> [[stetige Funktion]], dann ist | Es sei <math>f</math> eine auf dem Intervall <math>[a;b]</math> [[stetige Funktion]], dann ist | ||
:<math>I_a(x)=\int_a^x f(t) | :<math>I_a(x)=\int_a^x f(t)dt</math> | ||
die dazugehörige '''Integralfunktion'''. | die dazugehörige '''Integralfunktion'''. | ||
==Flächen zwischen Funktionsgraphen ermitteln== | ==Flächen zwischen Funktionsgraphen ermitteln== | ||
Es seien <math>f, ~g</math> auf dem Intervall <math>[a;b]</math> stetige Funktionen. Die Fläche zwischen den Graphen von <math>f, ~g</math> wird wie folgt ermittelt: | Es seien <math>f, ~g</math> auf dem Intervall <math>[a;b]</math> stetige Funktionen. Die Fläche zwischen den Graphen von <math>f, ~g</math> wird wie folgt ermittelt: | ||
# Schnittstellen <math>x_{S_1}, | # Schnittstellen <math>x_{S_1},\dots,x_{S_n}</math> mit <math>n \in \mathbb{N}</math> der Graphen von <math>f, ~g</math> ermitteln. | ||
# Stammfunktionen <math>F,~G</math> ermitteln | # Stammfunktionen <math>F,~G</math> ermitteln | ||
# <math>A=|\int_{x_{S_1}}^{x_{S_2}}(f(x)-g(x))dx|+|\int_{x_{S_1}}^{x_{S_2}}(f(x)-g(x))dx|+ | # <math>A=|\int_{x_{S_1}}^{x_{S_2}}(f(x)-g(x))dx|+|\int_{x_{S_1}}^{x_{S_2}}(f(x)-g(x))dx|+\dots+|\int_{x_{S_{n-1}}}^{x_{S_n}}(f(x)-g(x))dx|</math> berechnen. (siehe [[Betragsfunktion]]) | ||
==Beispiele== | ==Beispiele== | ||